【題目】問題探究
(1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,點B,D,E在同一直線上,連接AD,BD.
①請探究AD與BD之間的位置關系:________;
②若AC=BC=,DC=CE=
,則線段AD的長為________;
拓展延伸
(2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE=90°,AC=,BC=
,CD=
,CE=1.將△DCE繞點C在平面內順時針旋轉,設旋轉角∠BCD為α(0°≤α<360°),作直線BD,連接AD,當點B,D,E在同一直線上時,畫出圖形,并求線段AD的長.
【答案】(1)①垂直,②4;(2)作圖見解析,或
【解析】
(1)①由“SAS”可證△ACD≌△BCE,可得∠ADC=∠BEC=45°,可得AD⊥BD;
②過點C作CF⊥AD于點F,由勾股定理可求DF,CF,AF的長,即可求AD的長;
(2)分點D在BC左側和BC右側兩種情況討論,根據勾股定理和相似三角形的性質可求解.
解:(1)∵△ABC和△DEC均為等腰直角三角形,
∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE
∵∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,且AC=BC,CE=CD
∴△ACD≌△BCE(SAS)
∴∠ADC=∠BEC=45°
∴∠ADE=∠ADC+∠CDE=90°
∴AD⊥BD
故答案為:垂直
②如圖,過點C作CF⊥AD于點F,
∵∠ADC=45°,CF⊥AD,CD=
∴DF=CF=1
∴
∴AD=AF+DF=4
故答案為:4.
(2)①如圖:
∵∠ACB=∠DCE=90°,AC=,BC=
,CD=
,CE=1,
∴AB=2,DE=2,∠ACD=∠BCE,
.
∴△ACD∽△BCE.
∴∠ADC=∠E,.
又∵∠CDE+∠E=90°,
∴∠ADC+∠CDE =90°,即∠ADE=90°.
∴AD⊥BE.
設BE=x,則AD=x.
在Rt△ABD中,,
即.
解得(負值舍去).
∴AD=.
②如圖,
同①設BE=x,則AD=x.
在Rt△ABD中,,即
.
解得(負值舍去).
∴AD=.
綜上可得,線段AD的長為
科目:初中數學 來源: 題型:
【題目】央視“經典詠流傳”開播以來受到社會廣泛關注.我市某校就“中華文化我傳承——地方戲曲進校園”的喜愛情況進行了隨機調查,對收集的信息進行統計,繪制了下面兩副尚不完整的統計圖.請你根據統計圖所提供的信息解答下列問題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”.
(1)被調查的總人數是_____________人,扇形統計圖中C部分所對應的扇形圓心角的度數為_______.
(2)補全條形統計圖;
(3)若該校共有學生1800人,請根據上述調查結果,估計該校學生中A類有__________人;
(4)在抽取的A類5人中,剛好有3個女生2個男生,從中隨機抽取兩個同學擔任兩角色,用樹形圖或列表法求出被抽到的兩個學生性別相同的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】大學畢業生小李自主創業,開了一家小商品超市.已知超市中某商品的進價為每件20元,售價為每件30元,每個月可賣出180件;如果每件商品的售價每上漲1元,則每個月就會少賣出10件,但每件售價必須低于34元,設每件商品的售價上漲元(
為非負整數),每個月的銷售利潤為
元.
(1)求與
的函數關系式,并直接寫出自變量
的取值范圍;
(2)利用函數關系式求出每件商品的售價為多少元時,每個月可獲得最大利潤?最大利潤是多少?
(3)利用函數關系式求出每件商品的售價定為多少元時,每個月的利潤恰好是1920元?這時每件商品的利潤率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=ax+2與x軸、y軸分別相交于A,B兩點,與雙曲線y=(x>0)相交于點P,PC⊥x軸于點C,且PC=4,點A的坐標為(﹣4,0).
(1)求雙曲線的解析式;
(2)若點Q為雙曲線上點P右側的一點,過點Q作QH⊥x軸于點H,當以點Q,C,H為頂點的三角形與△AOB相似時,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,O是BC邊的中點,點E是正方形內一動點,OE=2,連接DE,將線段DE繞點D逆時針旋轉90°得DF,連接AE、CF.則線段OF長的最小值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“端午節”是我國的傳統佳節,民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節前對某居民區市民進行了抽樣調查,并將調查情況繪制成如下兩幅統計圖(尚不完整).
請根據以上信息回答:
(1)本次參加抽樣調查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區有8000人,請估計愛吃D粽的人數;
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,AB=BD,點B、C、D、G四個點在同一個圓⊙O上,連接BG 并延長交AD于點F,連接DG并延長交AB于點E,BD與CG交于點H,連接FH,下列結 論:①AE=DF;②FH∥AB;③△DGH∽△BGE;④當CG為⊙O的直徑時,DF=AF.其中正確結論的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結論:①abc>0;②2a+b=0;③若m為任意實數,則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中,正確結論的個數為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=x﹣2的圖象與x軸交于點A,與y軸交于點B,點D的坐標為(﹣1,0),二次函數y=ax2+bx+c(a≠0)的圖象經過A,B,D三點.
(1)求二次函數的解析式;
(2)如圖1,已知點G(1,m)在拋物線上,作射線AG,點H為線段AB上一點,過點H作HE⊥y軸于點E,過點H作HF⊥AG于點F,過點H作HM∥y軸交AG于點P,交拋物線于點M,當HEHF的值最大時,求HM的長;
(3)在(2)的條件下,連接BM,若點N為拋物線上一點,且滿足∠BMN=∠BAO,求點N的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com