精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在RtΔABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙OAC于點D,點EAB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DFDG,且交BC于點F.

(1)求證:AE=BF;

(2)連接EF,求證:∠FEB=∠GDA;

(3)連接GF,AE=2,EB=4,求ΔGFD的面積.

【答案】(1)(2)見解析;(3)9

【解析】分析:1)連接BD,由三角形ABC為等腰直角三角形,求出∠A與∠C的度數根據AB為圓的直徑,利用圓周角定理得到∠ADB為直角,BD垂直于AC,利用直角三角形斜邊上的中線等于斜邊的一半得到AD=DC=BD=AC,進而確定出∠A=FBD再利用同角的余角相等得到一對角相等,利用ASA得到三角形AED與三角形BFD全等利用全等三角形對應邊相等即可得證;

2)連接EF,BG由三角形AED與三角形BFD全等,得到ED=FD,進而得到三角形DEF為等腰直角三角形利用圓周角定理及等腰直角三角形性質得到一對同位角相等,利用同位角相等兩直線平行,再根據平行線的性質和同弧所對的圓周角相等即可得出結論;

3)由全等三角形對應邊相等得到AE=BF=1,在直角三角形BEF,利用勾股定理求出EF的長利用銳角三角形函數定義求出DE的長,利用兩對角相等的三角形相似得到三角形AED與三角形GEB相似,由相似得比例,求出GE的長,GE+ED求出GD的長根據三角形的面積公式計算即可.

詳解:(1)連接BD.在RtABC,ABC=90°,AB=BC,∴∠A=C=45°.

AB為圓O的直徑,∴∠ADB=90°,BDAC,AD=DC=BD=AC,CBD=C=45°,∴∠A=FBD

DFDG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.

∵∠EDA+∠BDG=90°,∴∠EDA=FDB.在AED和△BFD,,∴△AED≌△BFDASA),AE=BF

2連接EF,BG

∵△AED≌△BFDDE=DF

∵∠EDF=90°,∴△EDF是等腰直角三角形∴∠DEF=45°.

∵∠G=A=45°,∴∠G=DEFGBEF,∴∠FEB=∠GBA

∵∠GBA=∠GDA,∴FEB=GDA;

3AE=BFAE=2,BF=2.在RtEBFEBF=90°,∴根據勾股定理得EF2=EB2+BF2

EB=4BF=2,EF==

∵△DEF為等腰直角三角形EDF=90°,cosDEF=

EF=,DE=×=

∵∠G=AGEB=AED,∴△GEB∽△AED=,GEED=AEEB,GE=8,GE=,GD=GE+ED=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某景區一電瓶小客車接到任務從景區大門出發,向東走2千米到達A景區,繼續向東走2.5千米到達B景區,然后又回頭向西走8.5千米到達C景區,最后回到景區大門.

(1)以景區大門為原點,向東為正方向,以1個單位長表示1千米,建立如圖所示的數軸,請在數軸上表示出上述A、B、C三個景區的位置.

(2)A景區與C景區之間的距離是多少?

(3)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充足電而途中不充電的情況下完成此次任務?請計算說明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若關于x的方程mx2x的解為整數,且m為負整數,求代數式5m2[m2﹣(6m5m2)﹣2m23m]的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先閱讀下面的知識,后解答后面的問題:

探究:如圖,在△ABC中,已知∠B=∠C,求證:AB=AC.

證明:過點AADBC,垂足為D, 在△ABD與△ACD中,

B=∠C, , , 所以△ABD≌△ACD ),所以AB=AC.

1)完成上述證明中的空白;

2)已知如圖,在△ABC中,AC=BC,∠ACB=90°,AD平分∠CAB.試問:AC+CDAB相等嗎?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校計劃選購甲、乙兩種圖書作為校園讀書節的獎品.已知甲圖書的單價是乙圖書單價的倍;用元單獨購買甲種圖書比單獨購買乙種圖書要少本.

1)甲、乙兩種圖書的單價分別為多少元?

2)若學校計劃購買這兩種圖書共本,且投入的經費不超過元,要使購買的甲種圖書數量不少于乙種圖書的數量,則共有幾種購買方案?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】實驗室里,水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為121,,用兩個相同的管子在容器的5cm高度處連通(即管子底端離容器底5cm),現三個容器中,只有甲中有水,水位高1cm,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水1分鐘,乙的水位上升cm,則開始注入 分鐘的水量后,甲與乙的水位高度之差是05cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于EF點,若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數y=ax+b(a≠0)的圖象與反比例函數y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標為(m,-2).

(1)求△AHO的周長;

(2)求該反比例函數和一次函數的解析式.

【答案】(1)△AHO的周長為12;(2) 反比例函數的解析式為y=,一次函數的解析式為y=-x+1.

【解析】試題分析: 1)根據正切函數,可得AH的長,根據勾股定理,可得AO的長,根據三角形的周長,可得答案;

2)根據待定系數法,可得函數解析式.

試題解析:(1)由OH=3tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5,

△AHO的周長=AO+AH+OH=3+4+5=12;

2)將A點坐標代入y=k≠0),得

k=-4×3=-12,

反比例函數的解析式為y=

y=-2時,-2=,解得x=6,即B6,-2).

A、B點坐標代入y=ax+b,得

,

解得,

一次函數的解析式為y=-x+1

考點:反比例函數與一次函數的交點問題.

型】解答
束】
25

【題目】如圖,已知點A、C分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE∠GBE的平分線與AD交于點D,連接CD

求證:①AB=AD;

②CD平分∠ACE

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,△ABC是等邊三角形,點D、E分別在BC,ACBDCEAD、BE相交于點M,

求證:(1)△AME∽△BAE;(2BD2AD×DM

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视