科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2013屆浙江省湖州市九年級中考一模調研測試數學試卷(帶解析) 題型:解答題
如圖①是矩形包書紙的示意圖,虛線是折痕,四個角均為大小相同的正方形,正方形的邊長為折疊進去的寬度.
(1)現有一本書長為25cm,寬為20cm,厚度是2cm,如果按照如圖①的包書方式,并且折疊進去的寬度是3cm,則需要書包紙的長和寬分別為多少?(請直接寫出答案).
(2)已知數學課本長為26 cm,寬為18.5cm,厚為1cm,小明用一張面積為1260cm2的矩形書包紙按如圖①包好了這本書,求折進去的寬度.
(3)如圖②,矩形ABCD是一張一個角(△AEF)被污損的書包紙,已知AB=30,BC=50,AE=12,AF=16,要使用沒有污損的部分包一本長為19,寬為16,厚為6的字典,小紅認為只要按如圖②的剪裁方式剪出一張面積最大的矩形PGCH就能包好這本字典. 設PM=x,矩形PGCH的面積為y,當x取何值時y最大?并由此判斷小紅的想法是否可行.
查看答案和解析>>
科目:初中數學 來源:2013年初中畢業升學考試(山東青島卷)數學(解析版) 題型:解答題
在前面的學習中,我們通過對同一面積的不同表達和比較,根據圖①和圖②發現并驗證了平方差公式和完全平方公式
這種利用面積關系解決問題的方法,使抽象的數量關系因集合直觀而形象化。
【研究速算】
提出問題:47×43,56×54,79×71,……是一些十位數字相同,且個位數字之和是10的兩個兩位數相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個正數的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。
(2)分析:原矩形面積可以有兩種不同的表達方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數字4加1的和與4相乘,再乘以100,加上個位數字3與7的積,構成運算結果。
歸納提煉:
兩個十位數字相同,并且個位數字之和是10的兩位數相乘的速算方法是(用文字表述) .
【研究方程】
提出問題:怎么圖解一元二次方程
幾何建模:
(1)變形:
(2)畫四個長為,寬為
的矩形,構造圖④
(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,或四個長
,寬
的矩形之和,加上中間邊長為2的小正方形面積
即:
∵
∴
∴
∵
∴
歸納提煉:求關于的一元二次方程
的解
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)
【研究不等關系】
提出問題:怎么運用矩形面積表示與
的大小關系(其中
)?
幾何建模:
(1)畫長,寬
的矩形,按圖⑤方式分割
(2)變形:
(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為
,
畫點部分的面積可表示為,由圖形的部分與整體的關系可知:
>
,即
>
歸納提煉:
當,
時,表示
與
的大小關系
根據題意,設,
,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com