精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在中,,,,以為斜邊作,使,的面積記為,則______;再以為斜邊作,使,的面積記為,……,以此類推,則______.(用含的式子表示)

【答案】

【解析】

首先計算得出ABC1的面積,進一步利用含30°角的直角三角形的特性以及勾股定理求得RtAC1C2RtAC2C3的面積,找出規律得出結論.

∵∠ACB=90°,∠BAC=30°,AB=4

BC=AB=2,

AC=BC=2,

SABC=BCAC=2,

ABC1中,

∵∠CAC1=30°,

CC1AC=

∵∠BAC=CAC1,∠ACB=AC1C=90°,

∴△ACB∽△AC1C

S1=SABC=,同理可得,S2=S1=2SABCS3=3SABC,

根據此規律可得,Sn=nSABC=

故答案為:;.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】全球最大的關公塑像矗立在荊州古城東門外.如圖,張三同學在東門城墻上C處測得塑像底部B處的俯角為18°48,測得塑像頂部A處的仰角為45°,點D在觀測點C正下方城墻底的地面上,若CD=10米,則此塑像的高AB約為 參考數據:tan78°12′≈4.8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某水果店經銷一種高檔水果,售價為每千克50
1)連續兩次降價后售價為每千克32元,若每次下降的百分率相同.求平均下降的百分率;
2)已知這種水果的進價為每千克40元,每天可售出500千克,經市場調查發現,若每千克漲價1元,日銷售量將減少20千克,每千克應漲價多少元才能使每天獲得的利潤最大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】畫出二次函數y=2x2+8x+6的圖象.

1)根據圖象寫出當yx的增大而減小時x的范圍;

2)根據圖象寫出滿足不等式2x2+8x+60x的取值范圍;

3)求函數圖象與兩坐標軸交點所圍成的三角形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(問題提出)

如圖①,在中,若,,求邊上的中線的取值范圍.

(1)(問題解決)

解決此問題可以用如下方法:延長到點使,再連接(或將繞著點逆時針旋轉得到),把、集中在中,利用三角形三邊的關系即可判斷,由此得出中線的取值范圍.

(2)(應用)

如圖②,在中,的中點,已知,,求的長.

(3)(拓展)

如圖③,在中,,點是邊的中點,點在邊上,過點交邊于點,連接。已知,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,,以點為圓心、2為半徑畫圓,點上任意一點,連接.將繞點按順時針方向旋轉,交于點,連接

1)當相切時,

①求證:的切線;

②求點的距離.

2)連接,,當的面積最大時,點的距離為 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABCADE是有公共頂點的三角形,∠BAC=∠DAE90°,點P為射線BDCE的交點.

(1) ①如圖1,∠ADE=∠ABC45°,求證:∠ABD=∠ACE

②如圖2,∠ADE=∠ABC30°,①中的結論是否成立?請說明理由.

(2)(1) ①的條件下,AB6,AD4,若把ADE繞點A旋轉,當∠EAC90°時,畫圖并求PB的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點E是正方形內部一點,連接BE,CE,且∠ABE=BCE,點P是邊AB上一動點,連接PDPE,則PD+PE的最小值為_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC交⊙O于點D,E的中點,AEBC交于點F,C=2EAB.

(1)求證:AC是⊙O的切線;

(2)已知CD=4,CA=6,

①求CB的長;

②求DF的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视