精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,四邊形OABC為直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
(1)如圖①,若點P、Q分別從點C、A同時出發,點P以每秒2個單位的速度由C向B運動,點Q以每秒4個單位的速度由A向O運動,當點Q停止運動時,點P也停止運動.設運動時間為t秒(0≤t≤4).
①求當t為多少時,四邊形PQAB為平行四邊形?
②求當t為多少時,直線PQ將梯形OABC分成左右兩部分的比為1:2,并求出此時直線PQ的解析式.
(2)如圖②,若點P、Q分別是線段BC、AO上的任意兩點(不與線段BC、AO的端點重合),且四邊形OQPC面積為10,試說明直線PQ一定經過一定點,并求出該定點的坐標.
精英家教網
分析:(1)①只要PB=AQ就說明四邊形PQAB為平行四邊形,由此建立關于t的方程.
②直線PQ將梯形OABC分成左右兩部分的比為1:2,則梯形COQP的面積是梯形COAB面積的
1
3
.由此建立關于t的方程.
(2)通過設P點坐標,由面積已知可表示Q點坐標,這樣可表示出直線PQ的解析式,然后分析解析式找出定點.
解答:解:(1)①CP=2t,則PB=14-2t,AQ=4t因為PB∥QA,
所以當PB=QA時四邊形PQAB為平行四邊形,即有14-2t=4t.
所以t=
7
3
s

②直線PQ將梯形OABC分成左右兩部分的比為1:2,則梯形COQP的面積是梯形OABC面積的
1
3
,
1
2
(2t+16-4t)×2=
1
3
×
1
2
(14+16)×2

即t=3s時,直線PQ分梯形OABC左右兩部分的比為1:2
此時P(6,2),Q(4,0)可求得PQ:y=x-4.

(2)設點P的坐標為(m,2),則CP=m.
∵四邊形OQPC面積為10,
1
2
(m+OQ)•2=10
,解得OQ=10-m.
∴Q(10-m,0).
設直線PQ的解析式為y=kx+b,(k≠0),
2=mk+b
0=(10-m)k+b
,兩式相加得b=1-5k.
∴直線PQ的解析式可表示為y=kx+1-5k.
由于上式中當x=5時,y=1,與k的取值無關,
即不論k取任何滿足條件的值,直線PQ必過定點(5,1).
點評:掌握平行四邊形的判定方法.記住梯形的面積公式.掌握用待定系數法求直線的解析式.對于求定點的問題可用不定的解得到如上題:y=kx+1-5k,則(x-5)k=y-1,與k的取值無關即k有無數個值,所以x-5=0,y-1=0.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發,在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视