【題目】如圖所示,BF、DE相交于點A,BG交BF于點B,交AC于點C.
(1)指出ED、BC被BF所截的同位角,內錯角,同旁內角;
(2)指出ED、BC被AC所截的內錯角,同旁內角;
(3)指出FB、BC被AC所截的內錯角,同旁內角.
【答案】
(1)同位角:∠FAE和∠B;內錯角:∠B和∠DAB;同旁內角:∠EAB和∠B;
(2)內錯角:∠EAC和∠BCA,∠DAC和∠ACG;同旁內角:∠EAC和∠ACG,∠DAC和∠BCA;
(3) 內錯角:∠BAC和∠ACG,∠FAC和∠BCA;
同旁內角:∠BAC和∠BCA,∠BAC和∠ABC,∠B和∠ACB,∠FAC和∠ACG.
【解析】根據同位角:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的同側,并且在第三條直線(截線)的同旁,則這樣一對角叫做同位角. 內錯角:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的之間,并且在第三條直線(截線)的兩旁,則這樣一對角叫做內錯角.
同旁內角:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的之間,并且在第三條直線(截線)的同旁,則這樣一對角叫做同旁內角.進行解答.
此題主要考查了三線八角,關鍵是掌握同位角的邊構成“F”形,內錯角的邊構成“Z”形,同旁內角的邊構成“U”形.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+2分別與x、y軸交于點B、A,與反比例函數的圖象分別交于點C、D,CE⊥x軸于點E,OE=2.
(1)求反比例函數的解析式;
(2)連接OD,求△OBD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖所示,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.
(1)求證:AB∥CD;
(2)試探究∠2與∠3的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:
(1)找出直線DC,AC被直線BE所截形成的同旁內角.
(2)指出∠DEF與∠CFE是由哪兩條直線被哪一條直線所截形成的什么角.
(3)試找出圖中與∠DAC是同位角的所有角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),直線⊥
軸于點P,Rt△ABC中,斜邊AB=5,直角邊AC=3,點A(0,
)在
軸上運動,直角邊BC在直線
上,將△ABC繞點P順時針旋轉90°,得到△DEF。以直線
為對稱軸的拋物線經過點F。
(1)求點F的坐標(用含的式子表示)
(2)①如圖(2)當拋物線的頂點為點C時,拋物線恰好過坐標原點。求此時拋物線的解析式;
②如圖(3)不改變①中拋物線的開口方向和形狀,讓點A的位置發生變化,使拋物線與線段AB始終有交點M(,
).
(ⅰ)求的取值范圍;
(ⅱ)變化過程中,當變成某一個值時,點A的位置唯一確定,求此時點M的坐標。
圖(1) 圖(2) 圖(3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點(A在B的左邊),與y軸交于點C,拋物線上有一動點P
(1)若A(﹣2,0),C(0,﹣4)
①求拋物線的解析式;
②在①的情況下,若點P在第四象限運動,點D(0,﹣2),以BD、BP為鄰邊作平行四邊形BDQP,求平行四邊形BDQP面積的取值范圍.
(2)若點P在第一象限運動,且a<0,連接AP、BP分別交y軸于點E、F,則問 是否與a,c有關?若有關,用a,c表示該比值;若無關,求出該比值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com