精英家教網 > 初中數學 > 題目詳情

【題目】九年級(3)班數學興趣小組經過市場調查整理出某種商品在第x天(1≤x≤90,且x為整數)的售價與銷售量的相關信息如下.已知商品的進價為30元/件,設該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).

時間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20


(1)求出w與x的函數關系式;
(2)問銷售該商品第幾天時,當天的銷售利潤最大?并求出最大利潤;
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結果.

【答案】
(1)解:當1≤x≤50時,設商品的售價y與時間x的函數關系式為y=kx+b(k、b為常數且k≠0),

∵y=kx+b經過點(0,40)、(50,90),

,解得: ,

∴售價y與時間x的函數關系式為y=x+40;

當50≤x≤90時,y=90.

∴售價y與時間x的函數關系式為y=

由數據可知每天的銷售量p與時間x成一次函數關系,

設每天的銷售量p與時間x的函數關系式為p=mx+n(m、n為常數,且m≠0),

∵p=mx+n過點(60,80)、(30,140),

,解得: ,

∴p=﹣2x+200(0≤x≤90,且x為整數),

當1≤x≤50時,w=(y﹣30)p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;

當50≤x≤90時,w=(90﹣30)(﹣2x+200)=﹣120x+12000.

綜上所示,每天的銷售利潤w與時間x的函數關系式是w=


(2)解:當1≤x≤50時,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,

∵a=﹣2<0且1≤x≤50,

∴當x=45時,w取最大值,最大值為6050元.

當50≤x≤90時,w=﹣120x+12000,

∵k=﹣120<0,w隨x增大而減小,

∴當x=50時,w取最大值,最大值為6000元.

∵6050>6000,

∴當x=45時,w最大,最大值為6050元.

即銷售第45天時,當天獲得的銷售利潤最大,最大利潤是6050元


(3)解:當1≤x≤50時,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,

解得:30≤x≤50,

50﹣30+1=21(天);

當50≤x≤90時,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,

解得:50≤x≤53 ,

∵x為整數,

∴50≤x≤53,

53﹣50+1=4(天).

綜上可知:21+4﹣1=24(天),

故該商品在銷售過程中,共有24天每天的銷售利潤不低于5600元


【解析】(1)當1≤x≤50時,設商品的售價y與時間x的函數關系式為y=kx+b,由點的坐標利用待定系數法即可求出此時y關于x的函數關系式,根據圖形可得出當50≤x≤90時,y=90.再結合給定表格,設每天的銷售量p與時間x的函數關系式為p=mx+n,套入數據利用待定系數法即可求出p關于x的函數關系式,根據銷售利潤=單件利潤×銷售數量即可得出w關于x的函數關系式;(2)根據w關于x的函數關系式,分段考慮其最值問題.當1≤x≤50時,結合二次函數的性質即可求出在此范圍內w的最大值;當50≤x≤90時,根據一次函數的性質即可求出在此范圍內w的最大值,兩個最大值作比較即可得出結論;(3)令w≥5600,可得出關于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范圍,由此即可得出結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在校園文化藝術節中,九年級一班有1名男生和2名女生獲得美術獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術獎和音樂獎的7名學生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個,藍球1個,現在從中任意摸出一個紅球的概率為
(1)求袋中黃球的個數;
(2)第一次摸出一個球(不放回),第二次再摸出一個球,請用樹狀圖或列表法求兩次摸出的都是紅球的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在菱形ABCD中,AC=2,BD=2 ,AC,BD相交于點O.
(1)求邊AB的長;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉,其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F,連接EF與AC相交于點G. ①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉過程中,當點E為邊BC的四等分點時(BE>CE),求CG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,那么S3= , 則Sn= . (用含n的式子表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點,AD⊥AE.

(1)求證:AC2=CDBC;
(2)過E作EG⊥AB,并延長EG至點K,使EK=EB.
①若點H是點D關于AC的對稱點,點F為AC的中點,求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】矩形OABC在平面直角坐標系中的位置如圖所示,點B的坐標為(3,4),D是OA的中點,點E在AB上,當△CDE的周長最小時,點E的坐標為( 。

A.(3,1)
B.(3,
C.(3,
D.(3,2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以O(0,0)、A(1,-1)、B(2,0)為頂點,構造平行四邊形,下列各點中不能作為平行四邊形第四個頂點坐標的是(   )

A.(3,-1)
B.(-1,-1)
C.(1,1)
D.(-2,-1)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發,點P沿BE→ED→DC 運動到點C停止,點Q沿BC運動到點C停止,它們運動的速度都是1cm/s,設P,Q出發t秒時,△BPQ的面積為ycm,已知y與t的函數關系的圖形如圖2(曲線OM為拋物線的一部分),則下列結論:①AD=BE=5cm;②當0<t≤5時,;③直線NH的解析式為;④若△ABE與△QBP相似,則t=秒。其中正確的結論個數為( )

A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视