【題目】已知是
的外接圓,
是
的直徑,過
的中點
作
的直徑
交弦
于點
,連接
、
、
.
(1)如圖1,若點是線段
的中點,求
的度數;
(2)如圖2,在上取一點
,使
,求證:
;
(3)如圖3,取的中點
,連接
并延長
交
于點
,連接
和
交于點
,若
,且
,求
的長.
【答案】(1);(2)見解析;(3)
【解析】
(1)根據垂徑定理可得是
的垂直平分線,又由點
是線段
的中點,可得
是
的垂直平分線,進而得出
為等邊三角形,由直徑所對的圓周角是直角,可在Rt△ABC中根據角的運算即可求出結果.
(2)根據內錯角相等,兩直線平行可得,由
得出邊角相等,進而得出
,得出四邊形
是平行四邊形,得到
.
(3)由點是
中點,得出
是
中位線,如圖所示構造輔助線,根據已知條件,運用勾股定理列出方程,解出方程.
(1)解:連接
∵點是
中點
∴
又∵
∴是
的垂直平分線
又∵是
中點
∴是
的垂直平分線
∴
又∵
∴為等邊三角形
∴
∵是
直徑
∴
∴
(2)證明:連接
由(1)可知
∵
∴
∴
∴
同理可知
∴
∴
∴
∴
∴四邊形是平行四邊形
∴
(3)由(1)可知點是
中點
∵點是
中點
∴是
中位線
即
∴
∴
∴
∴
∵
∴
∴
延長交
于點
,連接
,連接
并延長交
于點
,連接
和
,延長
和
相交于點
.
∵
∴
∵是
的直徑
∴
∴
∴
過點作
,垂足為
,過點
作
,垂足為
,
設則
,
,
,
,
,
,
∴
∵是
的中位線
∴
在中
在中設
,
,
,
在中
,
在中
解得
(舍去)
,
∵
∴
∴
在中
,
,
,
在中
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,拋物線y=ax2+bx-2與x軸交于點A(-3,0)、B(1,0),與y軸交于點C.
(1)求拋物線的函數表達式.
(2)在拋物線上是否存在點D,使得△ABD的面積等于△ABC的面積的倍?若存在,求出點D的坐標;若不存在,請說明理由.
(3)若點E是以點C為圓心且1為半徑的圓上的動點,點F是AE的中點,請直接寫出線段OF的最大值和最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示矩形中,
,
,
與
滿足的反比例函數關系如圖2所示,等腰直角三角形
的斜邊
過
點,點
,
分別在
,
上,
為
的中點,則下列結論正確的是( )
A.當時,
B.當時,
C.當增大時,
的值增大
D.當增大時,
的值不變
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體育中考前,抽樣調查了九年級學生的“1分鐘跳繩”成績,并繪制成了下面的頻數分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補全頻數分布直方圖;
(2)扇形圖中m= ;
(3)若“1分鐘跳繩”成績大于或等于140次為優秀,則估計全市九年級5900名學生中“1分鐘跳繩”成績為優秀的大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:如圖1,在正多邊形A1A2A3…An的邊A2A3上任取一不與點A2重合的點B2,并以線段A1B2為邊在線段A1A2的上方作以正多邊形A1B2B3…Bn,把正多邊形A1B2B3…Bn叫正多邊形A1A2…An的準位似圖形,點A3稱為準位似中心.
特例論證:(1)如圖2已知正三角形A1A2A3的準位似圖形為正三角形A1B2B3,試證明:隨著點B2的運動,∠B3A3A1的大小始終不變.
數學思考:(2)如圖3已知正方形A1A2A3A4的準位似圖形為正方形A1B2B3B4,隨著點B2的運動,∠B3A3A4的大小始終不變?若不變,請求出∠B3A3A4的大小;若改變,請說明理由.
歸納猜想:(3)在圖(1)的情況下:①試猜想∠B3A3A4的大小是否會發生改變?若不改變,請用含n的代數式表示出∠B3A3A4的大小(直接寫出結果);若改變,請說明理由.②∠B3A3A4+∠B4A4A5+∠B5A5A6+…+∠BnAnA1= (用含n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,拋物線(
為常數).
(1)拋物線的頂點坐標為( , )(用含的代數式表示);
(2)若拋物線經過點
且與
圖象交點的縱坐標為3,請在圖1中畫出拋物線
的簡圖,并求
的函數表達式;
(3)如圖2,規矩的四條邊分別平行于坐標軸,
,若拋物線
經過
兩點,且矩形
在其對稱軸的左側,則對角線
的最小值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AC為弦,且平分∠BAD,AD⊥CD,垂足為D.
(1) 求證:CD是⊙O的切線;
(2) 若⊙O的直徑為4,AD=3,試求∠BAC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人同時騎自行車分別從A、B兩地出發到AB之間的C地,且A、B、C三地在同一直線上.當乙到達C地時甲還未到達,乙在C地等了5分鐘,接到甲的電話說他的自行車壞了需要工具修理,于是乙在C地拿了工具箱立即以原來倍的速度前往甲壞車處,乙與甲會合后幫助甲花了10分鐘修好自行車,然后兩人以甲原來
倍的速度騎行同時到達C地.甲乙兩人距C地的距離之和y(米)與甲所用時間x(分鐘)之間的函數關系如圖所示(乙接電話和找工具箱的時間忽略不計),則A、B兩地之間的距離為___米.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com