精英家教網 > 初中數學 > 題目詳情
已知邊長為6的等邊三角形ABC,兩頂點A、B分別在直角墻面上滑動,連接OC,則OC的長的最大值是
3
3
+3
3
3
+3
分析:取AB中點D,連接OC、OD、DC,求出AD,根據勾股定理求出DC,根據直角三角形斜邊上中線性質求出OD,根據三角形三邊關系定理得出OD+DC>OC,得出當O、D、C三點共線時OC最長,即可得出答案.
解答:解:
取AB中點D,連接OC、OD、DC,
∵△ABC是等邊三角形,
∴AC=BC=AB=6,
∴AD=BD=
1
2
AB=3,CD⊥AB,
由勾股定理得:CD=
62-32
=3
3

∵∠AOB=90°,D為AB中點,
∴OD=
1
2
AB=3,
在△DOC中,OD+DC>OC,
當O、D、C三點共線時OC最長,
最大值是3+3
3

故答案為:3+3
3
點評:本題考查了等邊三角形性質,三角形的三邊關系定理,直角三角形斜邊上中線性質,勾股定理等知識點的綜合運用,題目比較好.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•黑龍江)已知等邊三角形ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊三角形AB1C1,再以等邊三角形AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊三角形AB2C2,再以等邊三角形AB2C2的邊B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊AB3C3;…,如此下去,這樣得到的第n個等邊三角形ABnCn的面積為
3
3
4
n
3
3
4
n

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•南湖區二模)在特殊四邊形的復習課上,王老師出了這樣一道題:
如圖1,在?ABCD中,E、F、G、H分別為AB,BC,CD,DA邊上的動點,連接EG,HF相交于點O,且∠HOE=∠ADC,若AB=a,AD=b,試探究:EG與FH的數量關系.
經過小組討論后,小聰建議分以下三步進行,請你解答:
(1)特殊情況,探索結論
當?ABCD是邊長為a的正方形時(如圖2),請寫出EG與FH的數量關系(不必證明);
(2)嘗試變題,再探思路
當?ABCD是邊長為a的菱形時(如圖3),EG與FH又有怎樣的數量關系呢?
小聰想:要求EG與FH的數量關系,就要構成全等三角形或相似三角形,于是,分別過點G、H作GM⊥AB于點M,HN⊥BC于點N,在△HNF和△GME中,有∠GME=∠HNF=Rt∠,由菱形面積與性質可得GM=HN,能否從已知條件得到∠MGE=∠NHF呢?請你根據小聰的思路完成解答過程;
(3)特例啟發,解答題目
猜想:原題中EG與FH的數量關系是
EG
FH
=
b
a
EG
FH
=
b
a
,并說明理由.

查看答案和解析>>

科目:初中數學 來源:2013年初中畢業升學考試(黑龍江龍東地區卷)數學(解析版) 題型:填空題

已知等邊三角形ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊三角形AB1C1,再以等邊三角形AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊三角形AB2C2,再以等邊三角形AB2C2的邊B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊AB3C3;…,如此下去,這樣得到的第n個等邊三角形ABnCn的面積為    

 

 

查看答案和解析>>

科目:初中數學 來源:2013年黑龍江省龍東地區中考數學試卷(解析版) 題型:填空題

已知等邊三角形ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊三角形AB1C1,再以等邊三角形AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊三角形AB2C2,再以等邊三角形AB2C2的邊B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊AB3C3;…,如此下去,這樣得到的第n個等邊三角形ABnCn的面積為   

查看答案和解析>>

科目:初中數學 來源:2009年廣西玉林市北流市新豐初中中考數學一模試卷(解析版) 題型:解答題

(2009•河西區一模)如圖一,已知點P是邊長為a的等邊△ABC內任意一點,點P到三邊的距離PD、PE、PF的長分別記為h1,h2,h3,則h1,h2,h3之間有什么關系呢?
分析:連接PA、PB、PC,則△ABC被分割成三個三角形,根據:
S△PAB+S△PBC+S△PAC=S△ABC,即:,可得
問題1:若點P是邊長為a的等邊△ABC外一點(如圖二所示位置),點P到三邊的距離PD、PE、PF的長分別記為h1,h2,h3.探索h1,h2,h3之間有什么關系呢?并證明你的結論;
問題2:如圖三,正方形ABCD的邊長為a,點P是BC邊上任意一點(可與B、C重合),B、C、D三點到射線AP的距離分別是h1,h2,h3,設h1+h2+h3=y,線段AP=x,求y與x的函數關系式,并求y的最大值與最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视