精英家教網 > 初中數學 > 題目詳情
(2013•濟寧三模)如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.

(1)當正方形ADEF繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當正方形ADEF繞點A逆時針旋轉45°時,如圖3,延長BD交CF于點G.求證:BD⊥CF;
(3)在(2)小題的條件下,AC與BG的交點為M,當AB=4,AD=
2
時,求線段CM的長.
分析:(1)根據△ABC是等腰直角三角形,四邊形ADEF是正方形,根據角邊角關系證出△BAD≌△CAF,根據全等三角形的對應邊相等,即可證得BD=CF;
(2)先設BG交AC于點M,根據(1)證出的△BAD≌△CAF,可得∠ABM=∠GCM,又根據對頂角相等,得出△BMA∽△CMG,再根據根據相似三角形的對應角相等,可得∠BGC=∠BAC=90°,即可證出BD⊥CF;
(3)首先過點F作FN⊥AC于點N,利用勾股定理即可求得AE,BC的長,繼而求得AN,CN的長,又由等角的三角函數值相等,可求得AM的值,從而求出CM的值.
解答:(1)解:BD=CF成立.
理由:∵△ABC是等腰直角三角形,四邊形ADEF是正方形,
∴AB=AC,AD=AF,∠BAC=∠DAF=90°,
∵∠BAD=∠BAC-∠DAC,∠CAF=∠DAF-∠DAC,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,
AB=AC
∠BAD=∠CAF
AD=AF
,
∴△BAD≌△CAF(SAS),
∴BD=CF.

(2)證明:設BG交AC于點M,
∵△BAD≌△CAF,
∴∠ABM=∠GCM,
∵∠BMA=∠CMG,
∴△BMA∽△CMG,
∴∠BGC=∠BAC=90°,
∴BD⊥CF.

(3)過點F作FN⊥AC于點N,
∵在正方形ADEF中,AD=DE=
2
,
∴AE=
AD2+DE2
=2,
∴AN=FN=
1
2
AE=1.
∵在等腰直角△ABC中,AB=AC=4,
∴CN=AC-AN=3,BC=
AB2+AC2
=4
2
,
∴在Rt△FCN中,tan∠FCN=
FN
CN
=
1
3
,
∴在Rt△ABM中,tan∠ABM
AM
AB
=tan∠FCN=
1
3
,
∴AM=
1
3
AB=
4
3

∴CM=AC-AM=4-
4
3
=
8
3
點評:此題考查了四邊形的綜合,用到的知識點是相似三角形的判定與性質、全等三角形的判定與性質、等腰直角三角形的性質、矩形的性質、勾股定理以及三角函數等知識,此題綜合性很強,難度較大,注意數形結合思想應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•濟寧三模)化簡(1+
1
m-1
m
m2-1
的結果是
m+1
m+1

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•濟寧三模)如圖,已知直線y=kx-6與拋物線y=ax2+bx+c相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•濟寧三模)
16
的算術平方根為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•濟寧三模)如圖,P1是反比例函數y=
k
x
(k>0)
在第一象限圖象上的一點,點A1的坐標為(2,0).若△P1OA1與△P2A1A2均為等邊三角形,則A2點的橫坐標為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•濟寧三模)(1)一個人由山底爬到山頂,需先爬45°的山坡200m,再爬30°的山坡300m,求山的高度(結果可保留根號).
(2)如圖,△ABC與△ABD中,AD與BC相交于O點,∠1=∠2,請你添加一個條件(不再添加其它線段,不再標注或使用其他字母),使AC=BD,并給出證明.
你添加的條件是:
AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等
AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等

證明:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视