【題目】如圖,在正方形ABCD中,AD=5,點E、F是正方形ABCD內的兩點,且AE=FC=3,BE=DF=4,則EF的長為( )
A. B.
C.
D.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系 xOy 中,菱形 ABOC 的頂點 O 在坐標原點,邊 BO 在 x 軸的負半軸上,頂點 C的坐標為(﹣3,4),反比例函數 y 的圖象與菱形對角線 AO 交于 D 點,連接 BD,當 BD⊥x 軸時,k的值是( )
A.B.
C.﹣12D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了解全校學生對電視節目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學生中隨機抽取部分學生進行問卷調查,并把調查結果繪制成兩幅不完整的統計圖.
請根據以上信息,解答下列問題:
(1)這次被調查的學生共有多少人?并將條形統計圖補充完整;
(2)在扇形統計圖中,“體育”對應的圓心角的度數是?
(3)若該校約有1500名學生,估計全校學生中喜歡娛樂節目的有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中, AB∥DC,∠BCD=90°,且AB=1,BC=2,
tan∠ADC=2.
(1)求證:DC=BC;
(2)E是梯形內的一點,F是梯形外的一點,且∠EDC=∠FBC,DE=BF,試判斷△ECF的形狀,并證明你的結論;
(3)在⑵的條件下,當BE:CE=1:2,∠BEC=135°時,求sin∠BFE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為F,CG⊥AE,交弦AE的延長線于點G,且CG=CF.
(1)求證:CG是⊙O的切線;
(2)若AE=2,EG=1,求由弦BC和所圍成的弓形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC為⊙O的內接三角形,AB為⊙O的直徑,過點A作⊙O的切線交BC的延長線于點D.
(1)求證:△DAC∽△DBA;
(2)過點C作⊙O的切線CE交AD于點E,求證:CE=AD;
(3)若點F為直徑AB下方半圓的中點,連接CF交AB于點G,且AD=6,AB=3,求CG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BE是O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.
(1)若∠ADE=25°,求∠C的度數;
(2)若AB=AC,CE=2,求⊙O半徑的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】邊長為4的正方形ABCD中,點E是BC邊上的一個動點,連接DE,交AC于點N,過點D作DF⊥DE,交BA的延長線于點F,連接EF,交AC于點M.
(1)判定△DFE的形狀,并說明理由;
(2)設CE=x,△AMF的面積為y,求y與x之間的函數關系式;并求出當x為何值時y有最大值?最大值是多少?
(3)隨著點E在BC邊上運動,NA·MC的值是否會發生變化?若不變,請求出NA·MC的值;若變化,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com