精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在正方形網格中,四邊形TABC的頂點坐標分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點T(1,1)為位似中心,在位似中心的同側將四邊形TABC放大為原來的2倍,放大后點A,B,C的對應點分別為A′,B′,C′畫出四邊形TA′B′C′;

(2)寫出點A′,B′,C′的坐標:

A′   ,B′   ,C′   ;

(3)(1)中,若D(a,b)為線段AC上任一點,則變化后點D的對應點D′的坐標為   

【答案】(1)詳見解析;(2)A′(3,5),B′(5,5),C′(7,3);(3)點D′的坐標為(2a﹣1,2b﹣1).

【解析】

(1)利用位似圖形的性質得出變化后圖形即可;

(2)利用已知圖形得出對應點坐標;

(3)利用各點變化規律,進而得出答案.

1)如圖所示:四邊形TA′B′C′即為所求;

(2)A′(3,5),B′(5,5),C′(7,3);

故答案為:(3,5),(5,5),(7,3);

(3)在(1)中,∵A(2,3),B(3,3),C(4,2),

A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);

∴D(a,b)為線段AC上任一點,

則變化后點D的對應點D′的坐標為(2a﹣1,2b﹣1).

故答案為:(2a﹣1,2b﹣1).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx經過點A(﹣1,)及原點,交x軸于另一點C(2,0),點D(0,m)是y軸正半軸上一動點,直線AD交拋物線于另一點B.

(1)求拋物線的解析式;

(2)如圖1,連接AO、BO,若OAB的面積為5,求m的值;

(3)如圖2,作BEx軸于E,連接AC、DE,當D點運動變化時,AC、DE的位置關系是否變化?請證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數的圖象經過點A(3,3)、B(4,0)和原點O.P為二次函數圖象上的一個動點,過點Px軸的垂線,垂足為D(m,0),并與直線OA交于點C.

(1)求直線OA和二次函數的解析式;

(2)當點P在直線OA的上方時,

①當PC的長最大時,求點P的坐標;

②當SPCO=SCDO時,求點P的坐標.

    

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】填空,完成下列說理過程

如圖,點A,O,B在同一條直線上,OD,OE分別平分∠AOC和∠BOC

(1)求∠DOE的度數;

(2)如果∠COD=65°,求∠AOE的度數.

解:(1)如圖,因為OD是∠AOC的平分線,

所以∠COD=AOC

因為OE是∠BOC的平分線,

所以∠COE=

所以∠DOE=COD+   =(AOC+BOC)=AOB=   °.

(2)(1)可知

BOE=COE=   ﹣∠COD=   °.

所以∠AOE=   ﹣∠BOE=   °.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在平面直角坐標系,直線分別交、軸于點AB兩點,OA=5,OAB=60°.

(1)如圖1,求直線AB的解析式;

(2)如圖2,P為直線AB上一點,連接OP,DOA延長線上,分別過點P、DOA、OP的平行線,兩平行線交于點C,連接AC,AD=m,ABC的面積為S,Sm的函數關系式;

(3)如圖3,(2)的條件下,PA上取點E ,使PE=AD, 連接EC,DE,若∠ECD=60°,四邊形ADCE的周長等于22,求S的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學將組織七年級學生春游一天,由王老師和甲、乙兩同學到客車租賃公司洽談租車事宜

1兩同學向公司經理了解租車的價格公司經理對他們說公司有45座和60座兩種型號的客車可供租用,60座的客車每輛每天的租金比45座的貴100元王老師說我們學校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元,你們能知道45座和60座的客車每輛每天的租金各是多少元嗎甲、乙兩同學想了一下,都說知道了價格

聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?

2公司經理問你們準備怎樣租車甲同學說我的方案是只租用45座的客車,可是會有一輛客車空出30個座位;乙同學說我的方案只租用60座客車,正好坐滿且比甲同學的方案少用兩輛客車,王老師在旁聽了他們的談話說從經濟角度考慮,還有別的方案嗎?如果是你,你該如何設計租車方案并說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知C,D為線段AB上的兩點,點M,N分別為ACBD的中點,若AB13,CD5,求線段MN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,銳角ABC內接于O,若O的半徑為6,sinA=,求BC的長.

【答案】BC=8.

【解析】試題分析:通過作輔助線構成直角三角形,再利用三角函數知識進行求解.

試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.

點睛:直徑所對的圓周角是直角.

型】解答
束】
22

【題目】如圖,一次函數y=k1x+b與反比例函數y=的圖象交于A(2,m),B(n,﹣2)兩點.過點BBCx軸,垂足為C,且SABC=5.

(1)求一次函數與反比例函數的解析式;

(2)根據所給條件,請直接寫出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函數y=圖象上的兩點,且y1≥y2,求實數p的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】根據下列語句畫圖:

1)畫∠AOB120°;

2)畫∠AOB的角平分線OC;

3)反向延長OC得射線OD;

4)分別在射線OA、OBOD上畫線段OEOFOG2cm;

5)連接EF、EG、FG;

6)你能發現EFEG、FG有什么關系?∠EFG、∠EGF、∠GEF有什么關系?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视