【題目】某通訊公司推出甲、乙兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數關系如圖所示.
(1)有月租費的收費方式是(填甲或乙),月租費是元;
(2)求出甲、乙兩種收費方式中y與自變量x之間的函數關系式.
【答案】
(1)甲,30
(2)解:由圖象可知,甲圖象過(0,30),(300,60)兩點,
設y甲=kx+b,
得: ,
解得: ,
故y甲=0.1x+30;
根據圖象可知,乙圖象經過原點(0,0),(300,60),
設y乙=mx,
將(300,60)代入求得:m=0.2,
故y乙=0.2x
【解析】(1)由圖象可知,甲圖象當x=0時,y=30可得答案;
(2)設y甲=kx+b,找出圖像上兩點的坐標代入可求出解析式;同理由待定系數法可求出乙的解析式.
【考點精析】根據題目的已知條件,利用一次函數的圖象和性質和確定一次函數的表達式的相關知識可以得到問題的答案,需要掌握一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠;確定一個一次函數,需要確定一次函數定義式y=kx+b(k不等于0)中的常數k和b.解這類問題的一般方法是待定系數法.
科目:初中數學 來源: 題型:
【題目】一家商店將某種商品按進貨價提高100%后,又以6折優惠售出,售價為60元,則這種商品的進貨價是( )
A.120元
B.100元
C.72元
D.50元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF;
(1)求證:Rt△ABE≌Rt△CBF;
(2)求證:AB=CE+BF;
(3)若∠CAE=30°,求∠ACF度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸交于A、B兩點,與y軸交于點C(0,-1).且對稱軸為
.
(1)求拋物線的解析式及A、B兩點的坐標;
(2)點D在x軸下方的拋物線上,則四邊形ABDC的面積是否存在最大值,若存在,求出此時點D的坐標;若不存在,請說明理由;
(3)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,求出所有滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 在東西方向的海岸線MN上有相距10海里的A、B兩艘船,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向上,船P在船B的北偏西45°方向上.求船P到海岸線MN的距離(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電腦公司銷售部為了定制下個月的銷售計劃,對20位銷售員本月的銷售量進行了統計,繪制成如圖所示的統計圖,則這20位銷售人員本月銷售量的平均數、中位數、眾數分別是( 。
A. 19,20,14 B. 19,20,20 C. 18.4,20,20 D. 18.4,25,20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發,沿軸以每秒1個單位長的速度向上移動,且過點P的直線l:y=-x+b也隨之移動,設移動時間為t秒.
(1)當t=3時,求l的解析式;
(2)若點M,N位于l的異側,確定t的取值范圍;
(3)直接寫出t為何值時,點M關于l的對稱點落在坐標軸上.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com