【題目】(1)方法感悟:如圖①,在正方形ABCD中,點E、F分別為DC、BC邊上的點,且滿足∠EAF=45°,連接EF.將△ADE繞點A順時針旋轉90°得到△ABG,易證△GAF≌△EAF,從而得到結論:DE+BF=EF.根據這個結論,若CD=6,DE=2,求EF的長.
(2)方法遷移:如圖②,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF=∠BAD,試猜想DE,BF,EF之間有何數量關系,證明你的結論.
(3)問題拓展:如圖③,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長線上的點,且∠EAF=∠BAD,試探究線段EF、BE、FD之間的數量關系,請直接寫出你的猜想(不必說明理由).
【答案】(1)5;(2)EF= DE+BF;證明見解析;(3)EF=BE-FD
【解析】
(1)根據題意設,然后根據勾股定理得出x值進而求出
的長即可;
(2) 延長FB到G,使,連接AG,去根據已知條件證明
,然后通過對應邊的轉化得出答案即可;
(3)按照(1)的思路,我們應該通過全等三角形來實現相等線段的轉換.就應該在BE上截取BG,使,連接AG.根據(1)的證法,我們可得出
,那么
.
解:(1)在正方形ABCD中,,
,
在中,
,
,
解得x=3,
(2)
證明如下:
如圖,延長FB到G,使,連接AG,
,
在中,
∵
在中,
,
,
(3)結論:,
證明:如圖所示,在BE上截取BG,使,連接AG.
∵在中,
,
.
,
,
.
科目:初中數學 來源: 題型:
【題目】如圖所示是二次函數圖象的一部分,圖象過
點
,二次函數圖象對稱軸為直線
,給出五個結論:①
;②
;③
;④方程
的根為
,
;⑤當
時,
隨著
的增大而增大.其中正確結論是( )
A. ①②③ B. ①③④ C. ②③④ D. ①④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從邊長為a的大正方形紙板中挖去一個邊長為b的小正方形后,將其裁成四個相同的等腰梯形(如圖1),然后拼成一個平行四邊形(如圖2)。那么通過計算兩個圖形的陰影部分的面積,可以驗證成立的公式是( )
A.a2-b2=(a-b)2 | B.(a+b)2="a+2ab+b" |
C.(a-b)2=a2-2ab+b2 | D.a2-b2=(a-b)(a+b) |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB=BC,AD2+CD2=2AB2,CD⊥AD.
(1)求證:AB⊥BC.
(2)若AB=3CD,AD=17,求四邊形ABCD的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,菱形OABC的頂點A在x軸的正半軸上,頂點C的坐標為(1,).
(1)求圖象過點B的反比例函數的解析式;
(2)求圖象過點A,B的一次函數的解析式;
(3)在第一象限內,當以上所求一次函數的圖象在所求反比例函數的圖象下方時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為打贏“脫貧攻堅”戰,某地黨委、政府聯合某企業帶領農戶脫貧致富,該企業給某低收入戶發放如圖①所示的長方形和正方形紙板,供其加工做成如圖②所示的A,B兩款長方體包裝盒(其中A款包裝盒無蓋,B款包裝盒有蓋).請你幫這戶人家計算他家領取的360張長方形紙板和140張正方形紙板,做成A,B型盒子分別多少個能使紙板剛好全部用完?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).
(1)求點C到x軸的距離;
(2)分別求△ABC的三邊長;
(3)點P在y軸上,當△ABP的面積為6時,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過點B的直線折疊,點O恰好落在弧AB上的點D處,折痕交OA于點C,則弧AD的長為( )
A. 2π B. 3π C. 4π D. 5π
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com