【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC=90°,AB=3,AD=4,BC=,動點P從A點出發,按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關于x的函數圖象大致是( 。
A. B.
C. D.
【答案】D
【解析】
分兩種情況:(1)當點P在AB上移動時,點D到直線PA的距離不變,恒為4;(2)當點P在BC上移動時,根據相似三角形判定的方法,判斷出△PAB∽△ADE,即可得出y(3<x≤6),據此判斷出y關于x的函數大致圖象是哪個即可.
根據題意,分兩種情況討論:
(1)當點P在AB上移動時,點D到直線PA的距離為:y=DA=4(0≤x≤3),即點D到PA的距離為AD的長度,是定值4;
(2)當點P在BC上移動時.
∵AB=3,BC=3,∴AC
6.
∵AD∥BC,∴∠APB=∠DAE.
∵∠ABP=∠AED=90°,∴△PAB∽△ADE,∴,∴
,∴y
(3<x≤6).
綜上,縱觀各選項,只有D選項圖形符合.
故選D.
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點D、E分別是邊AB、BC的中點,點F、G是邊AC的三等分點,DF、EG的延長線相交于點H,連接HA、HC.
(1)求證:四邊形FBGH是菱形;
(2)求證:四邊形ABCH是正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與
軸,
軸分別交于點
,經過點
的拋物線
與
軸的另一個交點為點
,點
是拋物線上一點,過點
作
軸于點
,連接
,設點
的橫坐標為
.
求拋物線的解析式;
當點
在第三象限,設
的面積為
,求
與
的函數關系式,并求出
的最大值及此時點
的坐標;
連接
,若
,請直接寫出此時點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我省中小學積極開展綜合實踐活動,某校準備組織開展四項綜合實踐活動:“A.我是非遺小傳人,B.學做家常餐,C.愛心義賣行動,D.找個崗位去體驗”.為了解學生最喜愛哪項綜合實踐活動,隨機抽取部分學生進行問卷調查(每位學生只能選擇一項),將調查結果繪制成下面兩幅不完整的統計圖,請結合圖中提供的信息回答下列問題:
(1)本次一共調查了 名學生,在扇形統計圖中,m的值是 ;
(2)補全條形統計圖;
(3)若該校共有1200名學生,估計最喜愛B和C項目的學生一共有多少名?
(4)現有最喜愛A,B,C,D活動項目的學生各一人,學校要從這四人中隨機選取兩人交流活動體會,請用列表或畫樹狀圖的方法求出恰好選取最喜愛C和D項目的兩位學生的概率.
最喜愛各項綜合實踐活動條形統計圖 最喜愛各項綜合實踐活動扇形統計圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發現C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數據:sin53°≈,cos53°≈
,tan53°≈
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC中,P為三角形內一點,過P作PD⊥BC,PE⊥AB,PF⊥AC,連結AP、BP、CP,如果S△APF+S△BPE+S△PCD=,那么△ABC的內切圓半徑為___
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC紙片中,AB=BC>AC,點D是AB邊的中點,點E在邊AC上,將紙片沿DE折疊,使點A落在BC邊上的點F處.則下列結論成立的個數有( )①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位線;④BF+CE=DF+DE.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r,給出如下定義:若點P的橫、縱坐標均為整數,且到圓心C的距離d≤r,則稱P為⊙C 的關聯整點.
(1)當⊙O的半徑r=2時,在點D(2,-2),E(-1,0),F(0,2)中,為⊙O的關聯整點的是 ;
(2)若直線上存在⊙O的關聯整點,且不超過7個,求r的取值范圍;
(3)⊙C的圓心在x軸上,半徑為2,若直線上存在⊙C的關聯整點,求圓心C的橫坐標t的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com