【題目】在邊長為1個單位長度的正方形網格中建立如圖所示的平面直角坐標系,△ABC的頂點都在格點上,請解答下列問題:
(1)①作出△ABC向左平移4個單位長度后得到的△A1B1C1, 并寫出點C1的坐標;
②作出△ABC關于原點O對稱的△A2B2C2, 并寫出點C2的坐標;
(2)已知△ABC關于直線l對稱的△A3B3C3的頂點A3的坐標為(-4,-2),請直接寫出直線l的函數解析式.
科目:初中數學 來源: 題型:
【題目】某木板加工廠將購進的A型、B型兩種木板加工成C型,D型兩種木板出售,已知一塊A型木板的進價比一塊B型木板的進價少10元,且購買3塊A型木板和2塊B型木板共花費120元.
(1)A型木板與B型木板的進價各是多少元?
(2)根據市場需求,該木板加工廠決定用不超過2770元購進A型木板、B型木板共100塊,若一塊A型木板可制成1塊C型木板、2塊D型木板;一塊B型木板可制成2塊C型木板、1塊D型木板,且生產出來的C型木板數量不少于D型木板的數量的7/5.
①該木板加工廠有幾種進貨方案?
②若C型木板每塊售價30元,D型木板每塊售價25元,且生產出來的C型木板、D型木板全部售出,哪一種方案獲得的利潤最大,求出最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】校體育組為了解全校學生“最喜歡的一項球類項目”,隨機抽取了部分學生進行調查,下面是根據調查結果繪制的不完整的統計圖:
請你根據統計圖回答下列問題:
(1)喜歡乒乓球的學生所占的百分比是多少?并請補全條形統計圖;
(2)請你估計全校500名學生中最喜歡“排球”項目的有多少名?
(3)在扇形統計圖中,“籃球”部分所對應的圓心角是多少度?
(4)籃球教練在制定訓練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學中任選兩人進行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC繞點A按順時針方向旋轉45°后得到△AB′C′,則線段BC在上述旋轉過程中所掃過部分(陰影部分)的面積是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將下面的證明過程補充完整,括號內寫上相應理由或依據:已知,如圖,,
,垂足分別為D、F,
,請試說明
.
證明:∵,
(已知)
∴(____________________________)
∴________(____________________________)
∴________(____________________________)
又∵(已知)
∴________(____________________________)
∴________(____________________________)
∴.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料并解決后面的問題
材料:對數的創始人是蘇格蘭數學家納皮爾(J.Npler,1550-1617年),納皮爾發明對數是在指數書寫方式之前,直到18世紀瑞士數學家歐拉(Evler,1707--1783)才發現指數與對數之間的聯系,我們知道,n個相同的因數a相乘aa…,a記為an,如23=8,此時,3叫做以2為底8的對數,記為log28,即log28=3一般地若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對數,記為logab,即logab=n.如34=81,則4叫做以3為底81的對數,記為log381,即log381=4.
(1)計算下列各對數的值:log24=______,log216=______,log264=______;
(2)通過觀察(1)中三數log24、log216、log264之間滿足的關系式是______;
(3)拓展延伸:下面這個一股性的結論成立嗎?我們來證明logaM+logaN=logaMN(a>0且a≠1,M>0,N>0)
證明:設logaM=m,logaN=n,
由對數的定義得:am=M,an=N,
∴aman=am+n=MN,
∴logaMN=m+n,
又∵logaM=m,logaN=n,
∴logaM+logaN=logaMN(a>0且a≠1,M>0,N>0);
(4)仿照(3)的證明,你能證明下面的一般性結論嗎?logaM-logaN=loga(a>0且a≠1,M>0,N>0)
(5)計算:log34+log39-log312的值為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在四邊形ABCD中,AC⊥BD于點E,AB=AC=BD,點M為BC中點,N為線段AM上的點,且MB=MN.
(1)求證:BN平分∠ABE;
(2)若BD=1,連結DN,當四邊形DNBC為平行四邊形時,求線段BC的長;
(3)如圖②,若點F為AB的中點,連結FN、FM,求證:△MFN∽△BDC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E為CD上一動點,AE交BD于F,過F作FH⊥AE于H,過H作GH⊥BD于G,下列有四個結論:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周長為定值,其中正確的結論有( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是邊長為1的菱形ABCD對角線AC上的一個動點,點M,N分別是AB,BC邊上的中點,則MP+PN的最小值是( 。
A. B. 1 C.
D. 2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com