【題目】如圖所示,在平面直角坐標系中,A(-1,5)、B(-1,0)、C(-4,3).
(1)直接寫出△ABC 的面積為 ;
(2)在圖形中作出△ABC 關于y 軸的對稱圖形△A1B1C1,并直接寫出△A1B1C1的三個頂點的坐標:A1( ),B1( ),C1( );
(3)是否存在一點 P 到 AC、AB 的距離相等,同時到點 A、點 B 的距離也相等.若存在保留作圖痕跡標出點 P 的位置,并簡要說明理由;若不存在,請說明理由.
【答案】(1)7.5;(2)作圖見解析,(1,5)、(1,0)、(4,3);(3)答案見解析.
【解析】
(1)根據三點的坐標作出△ABC,再根據三角形的面積公式求解可得;
(2)分別作出點A、B、C關于y軸的對稱點,再順次連接即可得;
(3)根據已知條件知點P為∠CAB平分線與線段AB的垂直平分線的交點,據此作圖可得.
(1)如圖,S△ABC5×3=7.5;
(2)如圖所示,△A1B1C1即為所求,A1(1,5)、B1(1,0)、C1(4,3);
(3)如圖所示,點P即為所求.
∵點P到AC、AB的距離相等,∴點P在∠CAB平分線上.
∵到點A、點B的距離也相等,∴點P在線段AB的垂直平分線上,∴點P為∠CAB平分線與線段AB的垂直平分線的交點.
科目:初中數學 來源: 題型:
【題目】已知數軸上A,B兩點對應的數分別為a,b,且a,b滿足|a+20|=﹣(b﹣13)2,點C對應的數為16,點D對應的數為﹣13.
(1)求a,b的值;
(2)點A,B沿數軸同時出發相向勻速運動,點A的速度為6個單位/秒,點B的速度為2個單位/秒,若t秒時點A到原點的距離和點B到原點的距離相等,求t的值;
(3)在(2)的條件下,點A,B從起始位置同時出發.當A點運動到點C時,迅速以原來的速度返回,到達出發點后,又折返向點C運動.B點運動至D點后停止運動,當B停止運動時點A也停止運動.求在此過程中,A,B兩點同時到達的點在數軸上對應的數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOC=80°,OE是∠BOC的角平分線,OF是OE的反向延長線.
(1)求∠2、∠3的度數;
(2)說明OF平分∠AOD的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC與△DCE有公共頂點C,AB=CD,BC=CE,∠ABC=∠DCE=90°.
(1)如圖1,當點D在BC延長線上時.
①求證:△ABC≌△DCE.
②判斷AC與DE的位置關系,并說明理由.
(2)如圖2,△CDE從(1)中位置開始繞點C順時針旋轉,當點D落在BC邊上時停止.
①若∠A=60°,記旋轉的度數為,當
為何值時,DE與△ABC一邊平行.
②如圖3,若AB=c, BC=a, AC=b, a>c,邊BC,DE交于點F,求整個運動過程中,F在BC上的運動路程(用含a, b, c的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB于點D,BE平分∠ABC,且BE⊥AC于點E,與CD相交于點F,H是邊BC的中點,連接 DH與 BE相交于點 G,若GE=3,則BF=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,過B點的切線交OP于點C.
(1)求證:∠CBP=∠ADB.
(2)若OA=2,AB=1,求線段BP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.
(1)求坡底C點到大樓距離AC的值;
(2)求斜坡CD的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣(x﹣h)2(h為常數),當自變量x的值滿足2≤x≤5時,與其對應的函數值y的最大值為﹣1,則h的值為( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com