【題目】如圖,邊長為的正方形
的對角線交于點
,把邊
、
分別繞點
、
同時逆時針旋轉
得四邊形
,其對角線交點為
,連接
.下列結論:
①四邊形為菱形;
②;
③線段的長為
;
④點運動到點
的路徑是線段
.其中正確的結論共有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】
①根據旋轉角是60°以及正方形的四個角都是直角可得∠BCD′=30°,然后證明A′B∥CD′,進而得到四邊形A′BCD′是平行四邊形,再根據A′B=BC,即可證明四邊形A′BCD′是菱形;
②根據旋轉角是60°求出點B到A′D′的距離是A′B的一半,也就是AB的一半,然后根據正方形的面積公式以及菱形的面積即可證明;
③先求出OA′的長度,再根據菱形的對邊相等,減去正方形的邊長即可;
④根據旋轉的性質,點O以BC的中點為圓心,以BC的一半為半徑逆時針旋轉可以得到點O′,所以路徑是弧而非線段.
①根據題意,∠A′BA=∠D′CD=60°,
∵四邊形ABCD是正方形,
∴∠BCD=90°,
∴∠BCD′=30°,
∴∠A′BC+∠BCD′=60°+90°+30°=180°,
∴A′B∥CD′,
又∵A′B=CD′=AB,
∴四邊形A′BCD′是平行四邊形,
∵AB=BC(正方形的邊長相等),
∴四邊形A′BCD′是菱形,故本題小題正確;
②∵∠ABA′=60°,AB=2,
∴點B到A′D′的距離是:A′B=
AB=1,
∴S四邊形A′BCD=BC(A′B)=2×1=2,
S正方形ABCD=BCAB=2×2=4,
∴S四邊形A′BCD=S正方形ABCD,故本小題正確;
③∵點O是AC的中點,
∴OA′=A′Bsin60°+BC=2×
+
×2=
+1,
∴OD′=OA′A′D′=+12=
1,故本小題正確;
④根據菱形的對角線互相垂直可得△BCO′是直角三角形,
∴以BC的中點為圓心,以BC的一半為半徑,點O逆時針旋轉可以到達點O′的位置,經過路徑是弧而不是線段OO′,故本小題錯誤.
綜上所述,正確的結論有①②③共3個.
故選:C.
科目:初中數學 來源: 題型:
【題目】聯想三角形外心的概念,我們可引入如下概念:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.例:已知,則點
為
的準外心(如圖
).
如圖
,
為正三角形
的高,準外心
在高
上,且
,求
的度數.
如圖
,若
為直角三角形,
,
,
,準外心
在
邊上,試探究
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我市“青山綠水”行動中,某社區計劃對面積為的區域進行綠化,經投標由甲、乙兩個工程隊來完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,如果兩隊各自獨立完成面積為
區域的綠化時,甲隊比乙隊少用6天.
(1)求甲、乙兩工程隊每天各能完成多少面積的綠化;
(2)若甲隊每天綠化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,社區要使這次綠化的總費用不超過40萬元,則至少應安排乙工程隊綠化多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在中,
,
,垂足為點
,
是
外角
的平分線,
,垂足為點
,連接
交
于點
.
求證:四邊形
為矩形;
當
滿足什么條件時,四邊形
是一個正方形?并給出證明.
在
的條件下,若
,求正方形
周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AD是△ABC的角平分線,E、F分別是邊AB、AC的中點,連接DE、DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個條件,這個條件可以是 ;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,把△ABC紙片沿DE折疊,當點A落在四邊形BCDE內部時,
①寫出圖中一對全等的三角形,并寫出它們的所有對應角;
②設的度數為x,∠
的度數為
,那么∠1,∠2的度數分別是多少?(用含有x或y的代數式表示)
③∠A與∠1、∠2之間有一種數量關系始終保持不變,請找出這個規律.
(2)如圖2,把△ABC紙片沿DE折疊,當點A落在四邊形BCDE外部時,∠A與∠1、∠2的數量關系是否發生變化?如果發生變化,求出∠A與∠1、∠2的數量關系;如果不發生變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護環境和提高果樹產量,某果農計劃從甲、乙兩個倉庫用汽車向A、B兩個果園運送有機化肥,甲、乙兩個倉庫分別可運出80噸和100噸有機化肥,A、B兩個果園分別需要110噸和70噸有機化肥.甲倉庫到A、B兩個果園的路程分別為15千米和25千米,乙倉庫到A、B兩個果園的路程都是20千米.設甲倉庫運往A果園x噸有機化肥,解答下列問題:
(1)甲倉庫運往B果園 噸有機化肥,乙倉庫運往B果園 噸有機化肥;
(2)若汽車每噸每千米的運費為2元,設總運費為y元,求y關于x的函數表達式,并求當甲倉庫運往A果園多少噸有機化肥時,總運費最省?此時的總運費是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們將如圖所示的兩種排列形式的點的個數分別稱作“三角形數”(如1,3,6,10……) 和“正方形數”(如1,4,9,16……),在小于200的數中,設最大的“三角形數”為t,最大的“正方形數”為m,則t+m的值為( 。
A.33B.301C.386D.571
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com