【題目】在平面直角坐標系中,O為原點,點A(﹣2,0),點B(0,2),點E,點F分別為OA,OB的中點.若正方形OEDF繞點O順時針旋轉,得正方形OE′D′F′,記旋轉角為α.
(Ⅰ)如圖①,當α=90°時,求AE′,BF′的長;
(Ⅱ)如圖②,當α=135°時,求證AE′=BF′,且AE′⊥BF′;
(Ⅲ)若直線AE′與直線BF′相交于點P,求點P的縱坐標的最大值(直接寫出結果即可).
【答案】解:(Ⅰ)當α=90°時,點E′與點F重合,如圖①.
∵點A(﹣2,0)點B(0,2),
∴OA=OB=2.
∵點E,點F分別為OA,OB的中點,
∴OE=OF=1
∵正方形OE′D′F′是正方形OEDF繞點O順時針旋轉90°得到的,
∴OE′=OE=1,OF′=OF=1.
在Rt△AE′O中,
AE′= .
在Rt△BOF′中,
BF′= .
∴AE′,BF′的長都等于 .
(Ⅱ)當α=135°時,如圖②.
∵正方形OE′D′F′是由正方形OEDF繞點O順時針旋轉135°所得,
∴∠AOE′=∠BOF′=135°.
在△AOE′和△BOF′中, ,
∴△AOE′≌△BOF′(SAS).
∴AE′=BF′,且∠OAE′=∠OBF′.
∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,
∴∠CPB=∠AOC=90°
∴AE′⊥BF′.
(Ⅲ)∵∠BPA=∠BOA=90°,∴點P、B、A、O四點共圓,
∴當點P在劣弧OB上運動時,點P的縱坐標隨著∠PAO的增大而增大.
∵OE′=1,∴點E′在以點O為圓心,1為半徑的圓O上運動,
∴當AP與⊙O相切時,∠E′AO(即∠PAO)最大,
此時∠AE′O=90°,點D′與點P重合,點P的縱坐標達到最大.
過點P作PH⊥x軸,垂足為H,如圖③所示.
∵∠AE′O=90°,E′O=1,AO=2,
∴∠E′AO=30°,AE′= .
∴AP= +1.
∵∠AHP=90°,∠PAH=30°,
∴PH= AP=
.
∴點P的縱坐標的最大值為 .
【解析】(1)利用勾股定理即可求出AE′,BF′的長.(2)運用全等三角形的判定與性質、三角形的外角性質就可解決問題.(3)首先找到使點P的縱坐標最大時點P的位置(點P與點D′重合時),然后運用勾股定理及30°角所對的直角邊等于斜邊的一半等知識即可求出點P的縱坐標的最大值.
【考點精析】認真審題,首先需要了解三角形的外角(三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角),還要掌握含30度角的直角三角形(在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】為了豐富學生課外小組活動,培養學生動手操作能力,王老師讓學生把5m長的彩繩截成2m或1m的彩繩,用來做手工編織,在不造成浪費的前提下,你有幾種不同的截法( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結論: ①四邊形CFHE是菱形;②線段BF的取值范圍為3≤BF≤4;
③EC平分∠DCH;④當點H與點A重合時,EF=2
以上結論中,你認為正確的有 . (填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某網店打出促銷廣告:最潮新款服裝50件,每件售價300元,若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低2元.已知該服裝成本是每件200元,設顧客一次性購買服裝x件時,該網店從中獲利y元.
(1)求y與x的函數關系式,并寫出自變量x的取值范圍;
(2)顧客一次性購買多少件時,該網店從中獲利最多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為增強學生的身體素質,教育行政部門規定學生每天參加戶外活動的平均時間不少于1小時.為了解學生參加戶外活動的情況,對部分學生參加戶外活動的時間進行抽樣調查,并將調查結果繪制作成如下兩幅不完整的統計圖,請你根據圖中提供的信息解答下列問題:
(1)一共調查了多少名學生;
(2)請補全條形統計圖;
(3)若該校共有6000名學生,根據以上調查結果估計該校全體學生每天參與戶外活動所用的總時間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com