【題目】從左到右在每個小格子中填入一個整數,使得其中任意三個相鄰格子中所填整數之和都相等.若前m個格子中所填整數之和是2014,則m的值為_______
9 | a | b | c | -5 | 1 | … |
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,點E,F分別是線段BC,DC上的動點.當△AEF的周長最小時,則∠EAF的度數為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把下列各數填在相應的大括號里:
1,﹣,8.9,﹣7,
,﹣3.2,+1 008,﹣0.06,28,﹣9.
正整數集合:{______…};
負整數集合:{______…};
正分數集合:{______…};
負分數集合:{______…}.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班為了解學生一學期做義工的時間情況,對全班50名學生進行調查,按做義工的時間(單位:小時),將學生分成五類:
類(
),
類(
),
類(
),
類(
),
類(
),繪制成尚不完整的條形統計圖如圖11.
根據以上信息,解答下列問題:
(1) 類學生有 人,補全條形統計圖;
(2)類學生人數占被調查總人數的 %;
(3)從該班做義工時間在的學生中任選2人,求這2人做義工時間都在
中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“甌柑”是溫州的名優水果品牌。在平陽種植基地計劃種植A、B兩種甌柑30畝,已知A、B兩種甌柑的年產量分別為2000千克/畝、2500千克/畝,收購單價分別是8元/千克、7元/千克.
(1)若該基地收獲A、B兩種甌柑的年總產量為68000千克,求A、B兩種甌柑各種多少畝?
(2)若要求種植A種甌柑的畝數不少于B種的一半,全部收購該基地甌柑,那么種植A、 B兩種甌柑各多少畝時,其年總收入最多?最多為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,動點E從點A出發,以每秒2個單位的速度沿A→D→A運動,動點G從點A出發,以每秒1個單位的速度沿A→B運動,當有一個點到達終點時,另一點隨之也停止運動.過點G作FG⊥AB交AC于點F.設運動時間為t(單位:秒).以FG為一直角邊向右作等腰直角三角形FGH,△FGH與正方形ABCD重疊部分的面積為S.
(1)當t=1.5時,S=________;當t=3時,S=________.
(2)設DE=y1,AG=y2,在如圖所示的網格坐標系中,畫出y1與y2關于t的函數圖象.并求當t為何值時,四邊形DEGF是平行四邊形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a、b、c在數軸上對應的點如圖所示,
(1)化簡:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;
(2)若(c+4)2與|a+c+10|互為相反數,且b=|a﹣c|,求(1)中式子的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小丁設計的“利用直角三角形和它的斜邊中點作矩形”的尺規作圖過程.
已知:如圖,在RtΔABC中,∠ABC=90°,0為AC的中點.
求作:四邊形ABCD,使得四邊形ABCD為矩形.
作法:①作射線BO,在線段BO的延長線上取點D,使得DO=BO;
②連接AD,CD,則四邊形ABCD為矩形.
根據小丁設計的尺規作圖過程.
(1)使用直尺和圓規,在圖中補全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:∴點O為AC的中點,
∴AO=CO.
又∵DO=BO,
∵四邊形ABCD為平行四邊形(__________)(填推理的依據).
∵∠ABC=90°,
∴ABCD為矩形(_________)(填推理的依據).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com