【題目】如圖,在正方形ABCD外作等腰直角△CDE,DE=CE,連接BE,則tan∠EBC= .
【答案】
【解析】解:作EF⊥BC于F,如圖,設DE=CE=a,
∵△CDE為等腰直角三角形,
∴CD= CE=
a,∠DCE=45°,
∵四邊形ABCD為正方形,
∴CB=CD= a,∠BCD=90°,
∴∠ECF=45°,
∴△CEF為等腰直角三角形,
∴CF=EF= CE=
a,在Rt△BEF中,tan∠EBF=
=
=
,即∠EBC=
.
故答案為 .
作EF⊥BC于F,如圖,設DE=CE=a,根據等腰直角三角形的性質得CD= CE=
a,∠DCE=45°,再利用正方形的性質得CB=CD=
a,∠BCD=90°,接著判斷△CEF為等腰直角三角形得到CF=EF=
CE=
a,然后在Rt△BEF中根據正切的定義求解.本題考查了正方形的性質:正方形的四條邊都相等,四個角都是直角;正方形的兩條對角線相等,互相垂直平分,并且每條對角線平分一組對角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質.也考查了等腰直角三角形的性質.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與一次函數y=﹣x+4分別交y軸、x軸于A、B兩點.
(1)求這個拋物線的解析式;
(2)設P(x,y)是拋物線在第一象限內的一個動點,過點P作直線PH⊥x軸于點H,交直線AB于點M.
①求當x取何值時,PM有最大值?最大值是多少?
②當PM取最大值時,以A、P、M、N為頂點構造平行四邊形,求第四個頂點N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC , 按如下步驟作圖:
第一步,分別以點A、D為圓心,以大于 AD的長為半徑在AD兩側作弧,交于兩點M、N;
第二步,連接MN分別交AB、AC于點E、F;
第三步,連接DE、DF .
若BD=6,AF=4,CD=3,則BE的長是( ).
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,點E為BC上一點,F為DE的中點,且∠BFC=90°.
(1)當E為BC中點時,求證:△BCF≌△DEC;
(2)當BE=2EC時,求 的值;
(3)設CE=1,BE=n,作點C關于DE的對稱點C′,連結FC′,AF,若點C′到AF的距離是 ,求n的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=20°,∠ABC與∠ACB的角平分線交于D1 , ∠ABD1與∠ACD1的角平分線交于點D2 , 依此類推,∠ABD4與∠ACD4的角平分線交于點D5 , 則∠BD5C的度數是( )
A.24°
B.25°
C.30°
D.36°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線C:y=x2﹣2x+1的頂點為P,與y軸的交點為Q,點F(1, ).
(1)求點P,Q的坐標;
(2)將拋物線C向上平移得到拋物線C′,點Q平移后的對應點為Q′,且FQ′=OQ′.
①求拋物線C′的解析式;
②若點P關于直線Q′F的對稱點為K,射線FK與拋物線C′相交于點A,求點A的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長為10,則圖中陰影部分的面積為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com