精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,已知數軸上有三點A、B、C,它們對應的數分別為a、b、c,且cb=ba;點C對應的數是10

1)若BC=15,求a、b的值;

2)如圖2,在(1)的條件下,O為原點,動點PQ分別從A、C同時出發,點P向左運動,運動速度為2個單位長度/秒,點Q向右運動,運動速度為1個單位長度/秒,NOP的中點,MBQ的中點.

①用含t代數式表示PQ、 MN;

②在P、Q的運動過程中,PQMN存在一個確定的等量關系,請指出他們之間的關系,并說明理由.

【答案】(1)a=-20; b=-5;(2)①PQ=30+3t,MN= 12.5+1.5t;②PQ-2MN=5.

【解析】

(1)根據BC=15,點C對應的數是10可求出b的值,根據cb=ba可求出a的值;

(2)①利用中點的定義及線段的和差即可表示出PQMN的值;②觀察①中得到的結果即可得出PQMN存在的等量關系.

(1)∵BC=15,點C對應的數是10,

cb=15,

b=-5,

cb=ba=15,

a=-20;

(2)①∵OQ=10+t,OP=20+2t,

PQ=(10+t)+( 20+2t)=30+3t;

OB=5, OQ=10+t,

BQ=15+t,

MBQ的中點,

BM=7.5+0.5t,

OM=7.5+0.5t-5=2.5+0.5t.

OP=20+2t, NOP的中點,

ON=10+t,

MN=OM+ON=12.5+1.5t;

PQ-2MN=5.

PQ=30+3t,MN= 12.5+1.5t

PQ-2MN=(30+3t)-2(12.5+1.5t)=5.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】近年來,我國煤礦安全事故頻頻發生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調查中發現:從零時起,井內空氣中CO的濃度達到4mg/L,此后濃度呈直線型增加,在第7小時達到最高值46mg/L,發生爆炸;爆炸后,空氣中的CO濃度成反比例下降.如圖所示,根據題中相關信息回答下列問題:
(1)求爆炸前后空氣中CO濃度y與時間x的函數關系式,并寫出相應的自變量取值范圍;
(2)當空氣中的CO濃度達到34mg/L時,井下3km的礦工接到自動報警信號,這時他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4mg/L及以下時,才能回到礦井開展生產自救,求礦工至少在爆炸后多少小時才能下井?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下表中所列x,y的數值是某二次函數y=ax2+bx+c圖象上的點所對應的坐標,其中x1<x2<x3<x4<x5<x6<x7 , 根據表中所提供的信息,以下判斷正確的是( ).
①a>0;
②9<m<16;
③k≤9;
④b2≤4a(c﹣k).

x

x1

x2

x3

x4

x5

x6

x7

y

16

m

9

k

9

m

16


A.①②
B.③④
C.①②④
D.①③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】每年11月的最后一個星期四是感恩節,小龍調查了初三年級部分同學在感恩節當天將以何種方式表達感謝幫助過自己的人.他將調查結果分為如下四類:A類﹣﹣當面致謝;B類﹣﹣打電話;C類﹣﹣發短信息或微信;D類﹣﹣寫書信.他將調查結果繪制成如圖不完整的扇形統計圖和條形統計圖: 請你根據圖中提供的信息完成下列各題:

(1)補全條形統計圖;
(2)在A類的同學中,有3人來自同一班級,其中有1人學過主持.現準備從他們3人中隨機抽出兩位同學主持感恩節主題班會課,請你用樹狀圖或表格求出抽出的兩人都沒有學過主持的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ADAE,添加下列條件仍無法證明△ABE≌△ACD的是( 。

A. ABAC B. B=∠C

C. BECD D. ADC=∠AEB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=5cmBC=12cm.動點PA點出發沿AC的路徑向終點C運動;動點QB點出發沿BCA路徑向終點A運動.點P和點Q分別以每秒1cm3cm的運動速度同時開始運動,其中一點到達終點時另一點也停止運動,在某時刻,分別過點PQPEMNEQFMNF.則點P運動時間為_____秒時,△PEC與△QFC全等.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,CD垂直ABD,PBC上的任意一點,過P點分別作PEAB,PFCA,垂足分別為E,F

(1)PBC邊中點,則PE,PF,CD三條線段有何數量關系(寫出推理過程)?

(2)若P為線段BC上任意一點,則(1)中關系還成立嗎?

(3)若P為直線BC上任意一點,則PE,PF,CD三條線段間有何數量關系(請直接寫出).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司推銷一種產品,公司付給推銷員的月報酬有兩種方案如圖所示:其中方案一所示圖形是頂點B在原點的拋物線的一部分,方案二所示圖形是射線.設推銷員推銷產品的數量為x(件),付給推銷員的月報酬為y(元).

(1)分別求兩種方案中y關于x的函數關系式;
(2)當銷售達到多少件時,兩種方案月報酬差額將達到3800元?
(3)若公司決定改進“方案二”:保持基本工資不變,每件報酬增加m元,使得當銷售員銷售產量達到40件時,兩種方案的報酬差額不超過1000元.求m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉30°到正方形AB′C′D′,則圖中陰影部分的面積為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视