解:(1)①CF與BD位置關系是垂直,數量關系是相等
②當點D在BC的延長線上時①的結論仍成立
由正方形ADEF得AD=AF,∠DAF=90度
∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC
又AB=AC,∴△DAB≌△FAC,
∴CF=BD ∠ACF=∠ABD
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=45°
∴∠BCF=∠ACB+∠ACF=90°.
即CF⊥BD.
(2)當∠BCA=45°時,CF⊥BD(如圖)
理由是:過點A作AG⊥AC交BC于點G,
∴AC=AG可證:△GAD≌△CAF
∴∠ACF=∠AGD=45°∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
(3)當具備∠BCA=45°時 過點A作AQ⊥BC交BC于點Q,(如圖)
∵DE與CF交于點P時,
∴此時點D位于線段CQ上
∵∠BCA=45°,可求出AQ=QC=4.
設CD=x,
∴DQ=4+x
容易說明△AQD∽△DCP,
∴,
∴
∴CP=+x,
∵0<x≤3,
∴當x=3時,CP有最大值5.25.
科目:初中數學 來源: 題型:
2 |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com