【題目】如圖,AD為△ABC的中線,AB=AC,∠BAC=45.過點C 作CE⊥AB,垂足為E,CE與AD交于點F.
(1)求證: △AEF≌△CEB;
(2)試探索AF與CD的數量關系,并說明理由.
【答案】(1) 見解析;(2) ,理由見解析
【解析】
(1)根據三線合一可得:,AD⊥BC,從而得出∠ADB=90°,然后根據等腰直角三角形的判定,可得△AEC為等腰直角三角形,從而得出AE=CE,再根據同角的余角相等可得∠BAD =∠ECB,最后利用ASA即可證出△AEF≌△CEB;
(2)根據全等三角形的性質可得:AF=CB,從而得出.
解:(1)∵AD為△ABC的中線,AB=AC,
∴,AD⊥BC,
∴∠ADB=90°
∴∠BAD+∠B=90°
∵CE⊥AB,∠BAC=45
∴∠BEC=∠FEA=90°,△AEC為等腰直角三角形
∴∠ECB+∠B=90°,AE=CE
∴∠BAD =∠ECB
在△AEF和△CEB中
∴△AEF≌△CEB;
(2),理由如下:
∵△AEF≌△CEB
∴AF=CB
∵
∴
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( )
A. 15 B. 12.5 C. 14.5 D. 17
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場為了吸引顧客,設置了兩種促銷方式.一種方式是:讓顧客通過轉轉盤獲得購物券.規定顧客每購買100元的商品,就能獲得一次轉轉盤的機會,如果轉盤停止后,指針正好對準100元、50元、20元的相應區域,那么顧客就可以分別獲得100元、50元、20元購物券,憑購物券可以在該商場繼續購物;如果指針對準其他區域,那么就不能獲得購物券.另一種方式是:不轉轉盤,顧客每購買100元的商品,可直接獲得10元購物券.據統計,一天中共有1 000人次選擇了轉轉盤的方式,其中指針落在100元、50元、20元的次數分別為50次、100次、200次.
(1)指針落在不獲獎區域的概率約是多少?
(2)通過計算說明選擇哪種方式更合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=﹣2x+8與x軸、y軸分別交于點A、C,以OA、OC為邊在第一象限內作長方形OABC.
(1)求點A、C的坐標;
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式;
(3)在(2)的條件下,坐標平面內是否存在點P(除點B外),使得△APC與△ABC全等?若存在,直接寫出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將長方形紙片ABCD對折后再展開,得到折痕EF,M是BC上一點,沿著AM再次折疊紙片,使得點B恰好落在折痕EF上的點B′處,連接AB′、BB′.
判斷△AB′B的形狀為 ;
若P為線段EF上一動點,當PB+PM最小時,請描述點P的位置為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D
(1)求證:DE是的⊙O切線;
(2)若AB=6,BG=4,求BE的長;
(3)若AB=6,CE=1.2,請直接寫出AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,直線分別交
軸
軸于
、
兩點,
、
的長滿足
,點
是直線
上一點,且
.
求直線
的解析式;
求過點
的反比例函數解析式;
點
在反比例函數圖象上是否存在一點
,使以點
、
、
、
為頂點,
為腰的四邊形為梯形?若存在,請直接寫出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC分別沿AB,AC翻折得到△ABD 和△AEC,線段BD與AE交于點 F,連接BE .
(1)如果∠ABC=16,∠ACB=30°,求∠DAE的度數;
(2)如果BD⊥CE,求∠CAB 的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com