【題目】如圖,中,
,
,
,
,則
的度數為( )
A.B.
C.D.
【答案】D
【解析】
設∠ADE=x°,根據三角形外角性質,可得∠B+18°=x°+12°,可用x表示出∠B和∠C,再利用等腰三角形和外角的性質可表示出∠DAE和∠DEA,在△ADE中利用三角形內角和求得x,即可得∠DAE的度數.
解:設∠ADE=x°,
∵∠BAD=18°,∠EDC=12°,
∴∠B+18°=x°+12°,
∴∠B=x°-6°,
∵AB=AC,
∴∠C=∠B=x°-6°,
∴∠DEA=∠C+∠EDC=x°-6°+12°=x°+6°,
∵AD=DE,
∴∠DEA=∠DAE=x°+6°,
在△ADE中,由三角形內角和定理可得
x+x+6+x+6=180,
解得x=56,即∠ADE=56°,
∴∠DAE=62°
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形中,
,
,
.
分別是線段
,
上的點,連接
,使四邊形
為正方形,若點
是
上的動點,連接
,將矩形沿
折疊使得點
落在正方形
的對角線所在的直線上,對應點為
,則線段
的長為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC、BD相交于點O,∠A=∠D,要使得△AOB≌△DOC,還需補充一個條件,下面補充的條件不一定正確的是( 。
A.OA=ODB.AB=DCC.OB=OCD.∠ABO=∠DCO
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,然后解答問題:
分解因式:x3+3x2-4.
解答:把x=1代入多項式x3+3x2-4,發現此多項式的值為0,由此確定多項式x3+3x2-4中有因式(x-1),于是可設x3+3x2-4=(x-1)(x2+mx+n),分別求出m,n的值,再代入x3+3x2-4=(x-1)(x2+mx+n),就容易分解多項式x3+3x2-4.這種分解因式的方法叫“試根法”.
(1)求上述式子中m,n的值;
(2)請你用“試根法”分解因式:x3+x2-16x-16.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知 DE∥BC,CD 與 BE 相交于點 O,并且 S△DOE:S△COB=4:9,
(1)求 AE:AC 的值;
(2)求△ADE 與四邊形 DBCE 的面積比。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F。
(1)求證:△ABE≌△CAD;(2)求∠BFD的度數。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點,
.
(1)若,
滿足
.
①直接寫出______,
______.
②如圖1,為點
上方一點,連接
,在
軸右側作等腰
,
,連接
并延長交
軸于點
,當點
上方運動時,求
的面積;
(2)如圖2,若,點
在邊
上,且
,
為
上一點,且
,連接
,過點
作
的垂線交
于點
,交
于點
.連接
,當
,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:AB⊥AC,DE⊥AB,AC=BE,BC=BD,
(1)求證:BC⊥BD;
(2)若點F是BC,BD的垂直平分線的交點,連接FA、FE.填空:判斷△AFE的形狀是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com