【題目】在一次中學生田徑運動會上,參加男子跳高的15名運動員的成績如下表所示:
成績/m | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 |
人數 | 2 | 3 | 2 | 3 | 4 | 1 |
則這些運動員成績的中位數、眾數分別為( )
A. 1.70,1.75 B. 1.70,1.70
C. 1.65,1.75 D. 1.65,1.70
科目:初中數學 來源: 題型:
【題目】為了測量一幢高樓高AB,在旗桿CD與最右邊的高樓之間選定一點P.測得旗桿頂C視線PC與地面夾角∠DPC=38°,測樓頂A視線PA與地面夾角∠APB=52°,量得P到樓底距離PB與旗桿CD高度相等,等于8米,量得旗桿與樓之間距離為DB=33米,求樓高AB是多少米?(寫出過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠AOC=72°,射線OE在∠BOD的內部,∠DOE=2∠BOE.
(1)求∠BOE和∠AOE的度數;
(2)若射線OF與OE互相垂直,請直接寫出∠DOF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖①,在直角三角形ABC中,∠BAC=,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
(1)特例探究:如圖②,∠MAN=90°,射線AE在這個角的內部,點B、C在∠MAN的邊AM、AN上,且AB=AC, CF⊥AE于點F,BD⊥AE于點D.證明:△ABD≌△CAF;
(2)歸納證明:如圖③,點B,C在∠MAN的邊AM、AN上,點E,F在∠MAN內部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC. 求證:△ABE≌△CAF;
(3)拓展應用:如圖④,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com