【題目】已知:如圖△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2cm.則CB的長=( ).
A. 8cm B. 6cm C. 4cm D. 2cm
科目:初中數學 來源: 題型:
【題目】課堂上學習了勾股定理后,知道“勾三、股四、弦五”.王老師給出一組數讓學生觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,學生發現這些勾股 數的勾都是奇數,且從 3 起就沒有間斷過,于是王老師提出以下問題讓學生解決.
(1)請你根據上述的規律寫出下一組勾股數:11、________、________;
(2)若第一個數用字母a(a為奇數,且a≥3)表示,那么后兩個數用含a的代數式分別怎么表示?小明發現每組第二個數有這樣的規律4=,12=
,24=
……,于是他很快表示了第二數為
,則用含a的代數式表示第三個數為________;
(3)用所學知識證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)已知一個多邊形的內角和是它的外角和的 3 倍,求這個多邊形的邊數.
(2)如圖,點F 是△ABC 的邊 BC 延長線上一點.DF⊥AB,∠A=30°,∠F=40°,求∠ACF 的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D 為 AB的中點.
(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.
①若點 Q 的運動速度與點 P 的運動速度相等,經過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD 與△CQP 全等?
(2)若點 Q 以②中的運動速度從點 C 出發,點 P 以原來的運動速度從點 B 同時出發,都逆時針沿△ABC 三邊運動,則經過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某農戶種植一種經濟作物,總用水量y(m3)與種植時間x(天)之間的函數關系如圖所示.
(1)第20天的總用水量為 m3;
(2)當x≥20時,求y與x之間的函數表達式;
(3)種植時間為多少天時,總用水量達到7 000 m3.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=30°,以直角頂點A為圓心,AB長為半徑畫弧交BC于點D,過D作DE⊥AC于點E.若DE=a,則△ABC的周長用含a的代數式表示為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,線段AB的兩個端點坐標分別為A(1,1),B(2,1),以原點O為位似中心,將線段AB放大后得到線段CD.若CD=2,則端點C的坐標為( 。
A.(2,2)
B.(2,4)
C.(3,2)
D.(4,2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】滿足下列條件的△ABC , 不是直角三角形的是( 。
A.∠C=∠A+∠B
B.a:b:c=3:4:5
C.∠C=∠A-∠B
D.∠A:∠B:∠C=3:4:5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com