【題目】初三(1)班共有40名同學,在一次30秒打字速度測試中他們的成績統計如表:
打字數/個 | 50 | 51 | 59 | 62 | 64 | 66 | 69 |
人數 | 1 | 2 | 8 | 11 | 5 |
將這些數據按組距5(個字)分組,繪制成如圖的頻數分布直方圖(不完整).
(1)將表中空缺的數據填寫完整,并補全頻數分布直方圖;
(2)這個班同學這次打字成績的眾數是個,平均數是個.
【答案】
(1)解:∵初三(1)班共有40名同學,
∴打字個數在54.5~59.5之間的人數有:40﹣3﹣19﹣13=5,頻數分布直方圖如圖所示:
根據頻數分布直方圖可得:打字59個的人數有5人,打字66個的有:13﹣5=8(人),
填表如下:
打字數/個 | 50 | 51 | 59 | 62 | 64 | 66 | 69 |
人數 | 1 | 2 | 5 | 8 | 11 | 8 | 5 |
(2)64;63
【解析】解:(2)眾數是出現次數最多的數是64,出現次數最多,出現了11次; 平均數:(50×1+51×2+59×5+62×8+64×11+66×8+69×5)÷40=63.
【考點精析】通過靈活運用頻數分布直方圖和統計表,掌握特點:①易于顯示各組的頻數分布情況;②易于顯示各組的頻數差別.(注意區分條形統計圖與頻數分布直方圖);制作統計表的步驟:(1)收集整理數據.(2)確定統計表的格式和欄目數量,根據紙張大小制成表格.(3)填寫欄目、各項目名稱及數據.(4)計算總計和合計并填入表中,一般總計放在橫欄最左格,合計放在豎欄最上格.(5)寫好表格名稱并標明制表時間即可以解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內.當該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離( 取1.73,結果精確到0.1千米).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知P是線段AB的黃金分割點,且PA>PB,若S1表示PA為一邊的正方形的面積,S2表示長是AB,寬是PB的矩形的面積,則S1S2 . (填“>”“=”或“<”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以M(﹣5,0)為圓心、4為半徑的圓與x軸交于A、B兩點,P是⊙M上異于A、B的一動點,直線PA、PB分別交y軸于C、D,以CD為直徑的⊙N與x軸交于E、F,則EF的長( )
A.等于4
B.等于4
C.等于6
D.隨P點位置的變化而變化
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系中的任意兩點P1(x1 , y1),P2(x2 , y2),我們把|x1﹣x2|+|y1﹣y2|叫做P1、P2兩點間的直角距離,記作d(P1 , P2).
(1)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(2)設P0(x0 , y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0 , Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點M(2,1)到直線y=x+2的直角距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數y=﹣ x2+bx+c的圖象經過B、C兩點.
(1)求該二次函數的解析式;
(2)結合函數的圖象探索:當y>0時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊AD與矩形EFGH的邊FG重合,將正方形ABCD以1cm/s的速度沿FG方向移動,移動開始前點A與點F重合,在移動過程中,邊AD始終與邊FG重合,連接CG,過點A作CG的平行線交線段GH于點P,連接PD.已知正方形ABCD的邊長為1cm,矩形EFGH的邊FG,GH的長分別為4cm,3cm,設正方形移動時間為x(s),線段GP的長為y(cm),其中0≤x≤2.5.
(1)試求出y關于x的函數關系式,并求當y=3時相應x的值;
(2)記△DGP的面積為S1 , △CDG的面積為S2 . 試說明S1﹣S2是常數;
(3)當線段PD所在直線與正方形ABCD的對角線AC垂直時,求線段PD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知B港口位于A觀測點北偏東53.2°方向,且其到A觀測點正北方向的距離BD的長為16km,一艘貨輪從B港口以40km/h的速度沿如圖所示的BC方向航行,15min后達到C處,現測得C處位于A觀測點北偏東79.8°方向,求此時貨輪與A觀測點之間的距離AC的長(精確到0.1km).(參考數據:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50, ≈1.41,
≈2.24)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com