【題目】對于坐標平面內的點,現將該點向右平移1個單位,再向上平移2的單位,這種點的運動稱為點A的斜平移,如點P(2,3)經1次斜平移后的點的坐標為(3,5),已知點A的坐標為(1,0).
(1)分別寫出點A經1次,2次斜平移后得到的點的坐標.
(2)如圖,點M是直線l上的一點,點A關于點M的對稱點的點B,點B關于直線l的對稱軸為點C.
①若A、B、C三點不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點B由點A經n次斜平移后得到,且點C的坐標為(7,6),求出點B的坐標及n的值.
【答案】
(1)
解:∵點P(2,3)經1次斜平移后的點的坐標為(3,5),點A的坐標為(1,0),
∴點A經1次平移后得到的點的坐標為(2,2),點A經2次平移后得到的點的坐標(3,4)
(2)
解:①連接CM,如圖1:
由中心對稱可知,AM=BM,
由軸對稱可知:BM=CM,
∴AM=CM=BM,
∴∠MAC=∠ACM,∠MBC=∠MCB,
∵∠MAC+∠ACM+∠MBC+∠MCB=180°,
∴∠ACM+∠MCB=90°,
∴∠ACB=90°,
∴△ABC是直角三角形;
②延長BC交x軸于點E,過C點作CF⊥AE于點F,如圖2:
∵A(1,0),C(7,6),
∴AF=CF=6,
∴△ACF是等腰直角三角形,
由①得∠ACE=90°,
∴∠AEC=45°,
∴E點坐標為(13,0),
設直線BE的解析式為y=kx+b,
∵C,E點在直線上,
可得: ,
解得: ,
∴y=﹣x+13,
∵點B由點A經n次斜平移得到,
∴點B(n+1,2n),由2n=﹣n﹣1+13,
解得:n=4,
∴B(5,8).
【解析】此題考查幾何變換問題,關鍵是根據中心和軸對稱的性質和直角三角形的判定分析,同時根據待定系數法得出直線的解析式解答.(1)根據平移的性質得出點A平移的坐標即可;(2)①連接CM,根據中心和軸對稱的性質和直角三角形的判定解答即可;
②延長BC交x軸于點E,過C點作CF⊥AE于點F,根據待定系數法得出直線的解析式進而解答即可.
科目:初中數學 來源: 題型:
【題目】深圳市政府計劃投資1.4萬億元實施東進戰略.為了解深圳市民對東進戰略的關注情況.某校數學興趣小組隨機采訪部分深圳市民,對采訪情況制作了統計圖表的一部分如下:
關注情況 | 頻數 | 頻率 |
A.高度關注 | M | 0.1 |
B.一般關注 | 100 | 0.5 |
C.不關注 | 30 | N |
D.不知道 | 50 | 0.25 |
(1)根據上述統計圖可得此次采訪的人數為人,m= , n=
(2)根據以上信息補全條形統計圖;
(3)根據上述采訪結果,請估計在15000名深圳市民中,高度關注東進戰略的深圳市民約有人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在直角坐標系xoy中,直線l:y=kx+b交x軸,y軸于點E,F,點B的坐標是(2,2),過點B分別作x軸、y軸的垂線,垂足為A、C,點D是線段CO上的動點,以BD為對稱軸,作與△BCD或軸對稱的△BC′D.
(1)當∠CBD=15°時,求點C′的坐標.
(2)當圖1中的直線l經過點A,且k=﹣ 時(如圖2),求點D由C到O的運動過程中,線段BC′掃過的圖形與△OAF重疊部分的面積.
(3)當圖1中的直線l經過點D,C′時(如圖3),以DE為對稱軸,作于△DOE或軸對稱的△DO′E,連結O′C,O′O,問是否存在點D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD繞點A逆時針旋轉30°,得到平行四邊形AB′C′D′(點B′與點B是對應點,點C′與點C是對應點,點D′與點D是對應點),點B′恰好落在BC邊上,則∠C=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點
的人原地休息.已知甲先出發2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發的時間t(s)之間的關系
如圖所示,給出以下結論:①a=8;②b=92;③c=123.其中正確的是【 】
A.①②③ B.僅有①② C.僅有①③ D.僅有②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的函數圖像與x軸、y軸分別交于點A、B,以線段AB為直角邊在第一象限內作Rt△ABC,且使∠ABC=30.
(1)求△ABC的面積;
(2)如果在第二象限內有一點P(m,),試用含m的代數式表示四邊形AOPB的面積,并求當△APB與△ABC面積相等時m的值;
(3)是否存在使△QAB是等腰三角形并且在坐標軸上的點Q?若存在,請寫出Q的所有可能的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為聲援揚州“運河申遺”,某校舉辦了一次運河知識競賽,滿分10分,學生得分為整數,成績達到6分以上(包括6分)為合格,達到9分以上(包含9分)為優秀.這次競賽中甲乙兩組學生成績分布的條形統計圖如圖所示.
(1)補充完成下面的成績統計分析表:
組別 | 平均分 | 中位數 | 方差 | 合格率 | 優秀率 |
甲組 | 6.7 | 3.41 | 90% | 20% | |
乙組 | 7.5 | 1.69 | 80% | 10% |
(2)小明同學說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上表可知,小明是組的學生;(填“甲”或“乙”)
(3)甲組同學說他們組的合格率、優秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你給出兩條支持乙組同學觀點的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,邊AC的垂直平分線交BC于點D,交AC于點E,連接BE.
(1)若∠C=30°,求證:BE是△DEC外接圓的切線;
(2)若BE= ,BD=1,求△DEC外接圓的直徑.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com