精英家教網 > 初中數學 > 題目詳情
為鼓勵大學畢業生自主創業,某市政府出臺了相關政策:由政府協調,本市企業按成本價提供產品給大學畢業生自主銷售,成本價與出廠價之間的差價由政府承擔,李明按照相關政策投資銷售本市生產的一種新型節能燈,已知這種節能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數:y=-10x+500.
⑴李明在開始創業的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
⑵設李明獲得的利潤為W(元),當銷售單價定為多少元時,每月可獲得最大利潤?
⑶物價部門規定,這種節能燈的銷售單價不得高于25元,如果李明想要每月獲得的利潤不低于3000元,那么政府為他承擔的總差價最少為多少元?
(1)600;(2)30;(3)500.

試題分析:(1)根據銷售額=銷售量×銷售單價,列出函數關系式;
(2)用配方法將(2)的函數關系式變形,利用二次函數的性質求最大值;
(3)把y=3000代入(2)的函數關系式中,解一元二次方程求x,根據x的取值范圍求x的值.
試題解析:⑴當x=20時,y=-10x+500=-10×20+500=300,
300×(12-10)=300×2=600,
即政府這個月為他承擔的總差價為600元.
⑵依題意得,W=(x-10)(-10x+500)=-10x2+600x-5000=-10(x-30)2+4000
∵a=-10<0,∴當x=30時,W有最大值4000.
即當銷售單價定為30元時,每月可獲得最大利潤4000元.
⑶由題意得:-10x2+600x-5000=3000,解得:x1=20,x2=40.
∵a=-10<0,拋物線開口向下,
∴結合圖象可知:當20≤x≤40時,W≥3000.

又∵x≤25,
∴當20≤x≤25時,W≥3000.
設政府每個月為他承擔的總差價為p元,
∴p=(12-10)×(-10x+500)
=-20x+1000.
∵k=-20<0.
∴p隨x的增大而減小,∴當x=25時,p有最小值500.
即銷售單價定為25元時,政府每個月為他承擔的總差價最少為500元.
考點: 二次函數的應用.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線經過A(,0),C(2,-3)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式及頂點坐標;
(2)若將此拋物線平移,使其頂點為點D,需如何平移?寫出平移后拋物線的解析式;
(3)過點P(m,0)作x軸的垂線(1≤m≤2),分別交平移前后的拋物線于點E,F,交直線OC于點G,求證:PF=EG.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,已知A(3,0)、B(4,4)、原點O(0,0)在拋物線y=ax2+bx+c (a≠0)上.

(1)求拋物線的解析式.
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點D,求m的值及點D的坐標.
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P的坐標(點P、O、D分別與點N、O、B對應)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B,且18a+c=0.

(1)求拋物線的解析式.
(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.
①移動開始后第t秒時,設△PBQ的面積為S,試寫出S與t之間的函數關系式,并寫出t的取值范圍.
②當S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

拋物線與x軸交于A(x1,0)、 B(x2,0)兩點,且x1<x2,與y軸交于點C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個根,則拋物線的解析式________.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在平面直角坐標系xOy中,拋物線y=2x2+mx+8的頂點A在x 軸上,則m的值是( 。
A.±4 B.8C.-8D.±8

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

8.在平面直角坐標系中,將拋物線y=x2-x-6向上(下)或向左(右)平移m個單位,使平移后的拋物線恰好經過原點,則|m|的最小值()
A.1 B.2C.3D.6

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,矩形ABCD的兩邊長AB=18 cm,AD=4 cm,點P、Q分別從A、B同時出發,P在邊AB上沿AB方向以每秒2 cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1 cm的速度勻速運動.設運動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關于x的函數關系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

△ABC是銳角三角形,BC=6,面積為12.點P在AB上,點Q在AC上.如圖9-33,正方形PQRS(RS與A在PQ的異側)的邊長為x,正方形PQRS與△ABC的公共部分的面積為y.

(1)當RS落在BC上時,求x;
(2)當RS不落在BC上時,求y與x的函數關系式;
(3)求公共部分面積的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视