【題目】如圖,△ABC是等邊三角形,點D在BC上,△ADE是等腰三角形,AD =AE ,∠DAE =100°,當DE⊥AC時,求∠BAD和∠EDC的度數.
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點P在射線OM上移動,兩直角邊分別與OA、OB相交于點C、D,問PC與PD相等嗎?試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】聯想三角形外心的概念,我們可引入如下概念:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.例:已知,則點
為
的準外心(如圖
).
如圖
,
為正三角形
的高,準外心
在高
上,且
,求
的度數.
如圖
,若
為直角三角形,
,
,
,準外心
在
邊上,試探究
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,
的
、
兩個頂點在
軸上,頂點
在
軸的負半軸上.已知
,
,
的面積
,拋物線
經過
、
、
三點.
求此拋物線的函數表達式;
點
是拋物線對稱軸上的一點,在線段
上有一動點
,以每秒
個單位的速度從
向
運動,(不與點
,
重合),過點
作
,交
軸于點
,設點
的運動時間為
秒,試把
的面積
表示成
的函數,當
為何值時,
有最大值,并求出最大值;
設點
是拋物線上異于點
,
的一個動點,過點
作
軸的平行線交拋物線于另一點
.以
為直徑畫
,則在點
的運動過程中,是否存在與
軸相切的
?若存在,求出此時點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形中,
、
為對角線,點
、
、
、
分別為
、
、
、
邊的中點,下列說法:
①當時,
、
、
、
四點共圓.
②當時,
、
、
、
四點共圓.
③當且
時,
、
、
、
四點共圓.
其中正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我市“青山綠水”行動中,某社區計劃對面積為的區域進行綠化,經投標由甲、乙兩個工程隊來完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,如果兩隊各自獨立完成面積為
區域的綠化時,甲隊比乙隊少用6天.
(1)求甲、乙兩工程隊每天各能完成多少面積的綠化;
(2)若甲隊每天綠化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,社區要使這次綠化的總費用不超過40萬元,則至少應安排乙工程隊綠化多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護環境和提高果樹產量,某果農計劃從甲、乙兩個倉庫用汽車向A、B兩個果園運送有機化肥,甲、乙兩個倉庫分別可運出80噸和100噸有機化肥,A、B兩個果園分別需要110噸和70噸有機化肥.甲倉庫到A、B兩個果園的路程分別為15千米和25千米,乙倉庫到A、B兩個果園的路程都是20千米.設甲倉庫運往A果園x噸有機化肥,解答下列問題:
(1)甲倉庫運往B果園 噸有機化肥,乙倉庫運往B果園 噸有機化肥;
(2)若汽車每噸每千米的運費為2元,設總運費為y元,求y關于x的函數表達式,并求當甲倉庫運往A果園多少噸有機化肥時,總運費最。看藭r的總運費是多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com