精英家教網 > 初中數學 > 題目詳情

【題目】如圖,拋物線 (m>0)與x軸交于A,B兩點,點A在點B的左邊,C是拋物線上一個動點(點C與點A,B不重合),D是OC的中點,連結BD并延長,交AC于點E,則 的值是( )

A.
B.
C.
D.

【答案】D
【解析】解:過點O作OH∥AC交BE于點H,
,∴x1=﹣m,x2=2m,
∴A(﹣m,0)、B(2m,0),
∴OA=m,OB=2m,AB=3m,
∵D是OC的中點,∴CD=OD,
∵OH∥AC,∴
∴OH=CE,∴ ,
,故選D.

【考點精析】本題主要考查了二次函數的圖象和二次函數的性質的相關知識點,需要掌握二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側與墻MN平行且距離為0.8米,已知小汽車車門寬AO為1.2米,當車門打開角度∠AOB為40°時,車門是否會碰到墻?請說明理由。(參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2的正方形,點G是BC延長線上一點,連接AG,點E、F分別在AG上,連接BE、DF,∠1=∠2,∠3=∠4.
(1)證明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設BD=x,△BDP的面積為y,則下列能大致反映y與x函數關系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分數m進行分組統計,結果如表所示:

組號

分組

頻數

6≤m<7

2

7≤m<8

7

8≤m<9

a

9≤m≤10

2


(1)求a的值;
(2)若用扇形圖來描述,求分數在8≤m<9內所對應的扇形圖的圓心角大;
(3)將在第一組內的兩名選手記為:A1、A2 , 在第四組內的兩名選手記為:B1、B2 , 從第一組和第四組中隨機選取2名選手進行調研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結果).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,已知矩形ABCD中,AB=60cm,BC=90cm.點P從點A出發,以3cm/s的速度沿AB運動:同時,點Q從點B出發,以20cm/s的速度沿BC運動.當點Q到達點C時,P、Q兩點同時停止運動.設點P、Q運動的時間為t(s).

(1)當t=s時,△BPQ為等腰三角形;
(2)當BD平分PQ時,求t的值;
(3)如圖②,將△BPQ沿PQ折疊,點B的對應點為E,PE、QE分別與AD交于點F、G.探索:是否存在實數t,使得AF=EF?如果存在,求出t的值:如果不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在CD上的點F處.若△FDE的周長為5,△FCB的周長為17,則FC的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個不透明的袋里裝有2個紅球,1個白球,1個黃球,它們除顏色外其余都相同.
(1)求從袋中摸出一個球是黃球的概率.
(2)摸出一個球,記下顏色后不放回,攪拌均勻,再摸出1個球,求兩次摸出的球恰好顏色不同的概率(要求畫樹狀圖或列表).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算下列各題
(1)計算: +cos60°×( 2
(2)計算: +

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视