【題目】要建一個面積為150平方米的長方形養雞場,為了節約材料,雞場一邊靠著原有的一堵墻,墻長為18米,另三邊用籬笆圍成,如籬笆長度為35米,且要求用完。求雞場的長與寬各是多少米?
科目:初中數學 來源: 題型:
【題目】某碼頭上有20名工人裝載一批貨物,已知每人往一艘輪船上裝載2噸貨物,裝載完畢恰好用了6天,輪船到達目的地后,另一批工人開始卸貨,計劃平均每天卸貨v噸,剛要卸貨時遇到緊急情況,要求船上的貨物卸載完畢不超過4天,則這批工人實際每天至少應卸貨( 。
A.30噸
B.40噸
C.50噸
D.60噸
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰靈感.他驚喜地發現:當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明.下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1擺放,其中∠DAB=90°,求證:a2+b2=c2.
證明:連接DB,過點D作BC邊上的高DF,則DF=EC=b-a.
∵S四邊形ADCB=S△ACD+S△ABC=b2+
ab.
又∵S四邊形ADCB=S△ADB+S△DCB=c2+
a(b-a),
∴b2+
ab=
c2+
a(b-a),
∴a2+b2=c2.
請參照上述證法,利用圖2完成下面的證明:
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.
求證:a2+b2=c2.
證明:連接 ,
∵S五邊形ACBED= ,
又∵S五邊形ACBED= ,
∴ ,
∴a2+b2=c2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是“東方之星”救援打撈現場圖,小紅據此構造出一個如圖2所示的數學模型,已知:A、B、D三點在同一水平線上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.
(1)求點B到AC的距離;
(2)求線段CD的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com