【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=1,與x軸交于A、B(-1,0),與y軸交于C.下列結論錯誤的是( )
A.二次函數的最大值為a+b+cB.4a-2b+c﹤0
C.當y>0時,-1﹤x﹤3D.方程ax2+bx+c=-2解的情況可能是無實數解,或一個解,或二個解.
科目:初中數學 來源: 題型:
【題目】(1)問題 :如圖1,在四邊形中,點
為
上一點,∠
=∠
=∠
=90°,求證:
.
(2)探究:如圖2,在四邊形中,點
為
上一點,當∠
=∠
=∠
時,上述結論是否依然成立?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數的圖像與
軸交于點
.二次函數
的圖像經過點
,與
軸交于點
,與一次函數
的圖像交于另一點
.
(1)求二次函數的表達式;
(2)當時,直接寫出
的取值范圍;
(3)平移,使點
的對應點
落在二次函數第四象限的圖像上,點
的對應點
落在直線
上,求此時點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AD,BD是⊙O的弦,BC是⊙O的切線,切點為B,OC∥AD,BA,CD的延長線相交于點E.
(1)求證:DC是⊙O的切線;
(2)若⊙O半徑為4,∠OCE=30°,求△OCE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y= -x+b的圖象與反比例函數(x>0)的圖象交于點A(m , 3)和B(3 , n ).過A作AC⊥x軸于C,交OB于E,且EB = 2EO
(1)求一次函數和反比例函數解析式
(2)點P是線段AB上異于A,B的一點,過P作PD⊥x軸于D,若四邊形APDC面積為S,求S的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在△ABC中,AB>AC,點D,E分別在邊AB,AC上,且DE∥BC,若AD=2,AE=,則
的值是 ;
(2)如圖2,在(1)的條件下,將△ADE繞點A逆時針方向旋轉一定的角度,連接CE和BD,的值變化嗎?若變化,請說明理由;若不變化,請求出不變的值;
(3)如圖3,在四邊形ABCD中,AC⊥BC于點C,∠BAC=∠ADC=θ,且tanθ=,當CD=6,AD=3時,請直接寫出線段BD的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com