【題目】如圖,在平面直角坐標系中,已知Rt△AOB的兩直角邊OA,OB分別在x軸,y軸的正半軸上(OA<OB),且OA,OB的長分別是一元二次方程x2﹣14x+48=0的兩個根,線段AB的垂直平分線CD交AB于點C,分別交x軸,y軸于點D,E.
(1)直接寫出點A、B的坐標:A , B;
(2)求線段AD的長;
(3)已知P是直線CD上一個動點,點Q是直線AB上一個動點,則在坐標平面內是否存在點M,使得以點C、P、Q、M為頂點的四邊形是以5為邊長的正方形?若存在,直接寫出點M的坐標;若不存在,說明理由.
【答案】
(1)(6,0);(0,8)
(2)
解:在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,
∴AB= =10,
∵線段AB的垂直平分線CD交AB于點C,
∴AC= AB=5.
在△ACD與△AOB中,
∵∠CAD=∠OAB,∠ACD=∠AOB=90°,
∴△ACD∽△AOB,
∴ =
,即
=
,
解得AD= ,
∵A(6,0),點D在x軸上,
∴D(﹣ ,0).
設直線CD的解析式為y=kx+b,
由題意知C為AB中點,
∴C(3,4),
∵D(﹣ ,0),
∴ ,解得
,
∴直線CD的解析式為y= x+
;
(3)
解:在坐標平面內存在點M,使以點C、P、Q、M為頂點的四邊形是正方形,且該正方形的邊長為5,
∵AC=BC= AB=5,
∴以點C、P、Q、M為頂點的正方形的邊長為5,且點Q與點B或點A重合.分兩種情況:
① 當點Q與點B重合時,易求BM的解析式為y= x+8,設M(x,
x+8),
∵B(0,8),BM=5,
∴( x+8﹣8)2+x2=52,
化簡整理,得x2=16,
解得x=±4,
∴M2(4,11),M3(﹣4,5);
②當點Q與點A重合時,易求AM的解析式為y= x﹣
,
設M(x, x﹣
),
∵A(6,0),AM=5,
∴( x﹣
)2+(x﹣6)2=52,
化簡整理,得x2﹣12x+20=0,
解得x1=2,x2=10,
∴M4(2,﹣3),M1(10,3);
綜上所述,所求點M的坐標為M1(10,3),M2(4,11),M3(﹣4,5),M4(2,﹣3).
【解析】解:(1)解方程x2﹣14x+48=0,
得x1=6,x2=8,
∵OA<OB,
∴A(6,0),B(0,8);
所以答案是(6,0),(0,8).
【考點精析】掌握相似三角形的判定是解答本題的根本,需要知道相似三角形的判定方法:兩角對應相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應成比例且夾角相等,兩三角形相似(SAS);三邊對應成比例,兩三角形相似(SSS).
科目:初中數學 來源: 題型:
【題目】如圖在△ABC中,BO,CO分別平分∠ABC,∠ACB,交于O,CE為外角∠ACD的平分線,BO的延長線交CE于點E,記∠BAC=∠1,∠BEC=∠2,則以下結論①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正確的是( )
A. ①②③ B. ①③④ C. ①④ D. ①②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】田忌賽馬的故事為我們熟知.小亮與小齊學習概率初步知識后設計了如下游戲:小亮手中有方塊10、8、6三張撲克牌,小齊手中有方塊9、7、5三張撲克牌.每人從各自手中取出一張牌進行比較,數字大的為本“局”獲勝,每次取得牌不能放回.
(1)若每人隨機取手中的一張牌進行比賽,求小齊本“局”獲勝的概率;
(2)若比賽采用三局兩勝制,即勝2局或3局者為本次比賽獲勝者.當小亮的三張牌出牌順序為先出6,再出8,最后出10時,小齊隨機出牌應對,求小齊本次比賽獲勝的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點E,F分別在邊AB,BC上,沿直線EF將△EBF翻折,使頂點B的對應點B1落在AC邊上,且EB1⊥AC.求證:四邊形BFB1E是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2﹣2(k﹣1)x+k2=0,
(1)當k為何值時,方程有實數根;
(2)設x1 , x2是方程的兩個實數根,且x12+x22=4,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用一條長為18cm的細繩圍成一個等腰三角形.
(1)如果腰長是底邊長的2倍,求三角形各邊的長;
(2)能圍成有一邊的長是4cm的等腰三角形嗎?若能,求出其他兩邊的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩張寬為1cm的矩形紙條交叉疊放,其中重疊部分部分是四邊形ABCD,
(1)試判斷四邊形ABCD的形狀,并說明理由
(2)若∠BAD=30°,求重疊部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜邊AC,交AB于D,E是垂足,連接CD.若BD=1,則AC的長是( )
A.2
B.2
C.4
D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com