【題目】如圖,一圓弧形橋拱的圓心為,拱橋的水面跨度
米,橋拱到水面的最大高度
為
米.求:
橋拱的半徑;
現水面上漲后水面跨度為
米,求水面上漲的高度為________米.
【答案】(1)50;(2)10.
【解析】
(1)根據垂徑定理和勾股定理求解;
(2)由垂徑定理求出MH,由勾股定理求出EH,得出HF即可.
(1)如圖,
設點E是拱橋所在的圓的圓心,作EF⊥AB于F,延長EF交圓于點D,
則由垂徑定理知,點F是AB的中點,AF=FB=AB=40,EF=ED-FD=AE-DF,
由勾股定理知,AE2=AF2+EF2=AF2+(AE-DF)2,
設圓的半徑是r,
則:r2=402+(r-20)2,
解得:r=50;
即橋拱的半徑為50米;
(2)設水面上漲后水面跨度MN為60米,MN交ED于H,連接EM,如圖2所示
則MH=NH=MN=30,
∴EH==40(米),
∵EF=50-20=30(米),
∴HF=EH-EF=10(米);
故答案為:10.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD為邊BC上的中線,DE⊥AC于點E.
(1)請你寫出圖中所有與△CDE相似的三角形;
(2)若AB=10,BC=12,求EC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過點
和點
,與
軸交于另一點
.
(1)求拋物線的解析式;
(2)若點是拋物線上的動點,點
是拋物線對稱軸上的動點,是否存在這樣的點
,使以點
,
,
,
為頂點的四邊形是平行四邊形?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,ED切⊙O于點C,AD交⊙O于點F,∠AC平分∠BAD,連接BF.
(1)求證:AD⊥ED;
(2)若CD=4,AF=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標原點,頂點A在x軸上,∠B=120°,OA=1,將菱形OABC繞原點順時針旋轉105°至OA'B′C'的位置,則點B'的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC與⊙O相切于點B,連接OC,交⊙O于點E,弦AD∥OC.
(1)求證:點E是弧BD的中點;(2)求證:CD是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0.
(1)當k取何值時,方程有兩個不相等的實數根?
(2)在(1)的條件下,若k是滿足條件的最小整數,求方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,直徑AB與弦CD相交于點P,∠CAB=62°,∠APD=86°.
(1)求∠B的大;
(2)已知AD=6,求圓心O到BD的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,AB=CB,AC=10,S△ABC=60,E為AB上一動點,連結CE,過A作AF⊥CE于F,連結BF,則BF的最小值是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com