【題目】在圖1﹣﹣圖4中,菱形ABCD的邊長為3,∠A=60°,點M是AD邊上一點,且DM=AD,點N是折線AB﹣BC上的一個動點.
(1)如圖1,當N在BC邊上,且MN過對角線AC與BD的交點時,則線段AN的長度為 .
(2)當點N在AB邊上時,將△AMN沿MN翻折得到△A′MN,如圖2,
①若點A′落在AB邊上,則線段AN的長度為 ;
②當點A′落在對角線AC上時,如圖3,求證:四邊形AM A′N是菱形;
③當點A′落在對角線BD上時,如圖4,求的值.
【答案】(1);(2)①1;②見解析;③
=
.
【解析】
試題分析:(1)過點N作NG⊥AB于G,構造直角三角形,利用勾股定理解決問題;
(2)①利用線段中垂線的性質得到AN=A′N,再由三角函數求得;
②利用菱形的性質得到對角線平分每一組對角,得到∠DAC=∠CAB=30°,根據翻折的性質得到AC⊥MN,AM=A′M,AN=A′N,∠AMN=∠ANM=60°,AM=AN,AM=A′M=AN=A′N,四邊形AM A′N是菱形;
③根據菱形的性質得到AB=AD,∠ADB=∠ABD=60°,求得∠NA′M=∠DMA′+∠ADB,證得A′M=AM=2,∠NA′M=∠A=60°,得到∠NA′B=∠DMA′,利用三角形相似得到結果.
解:(1)如圖1,過點N作NG⊥AB于G,
∵四邊形ABCD是菱形,
∴AD∥BC,OD=OB,
∴=
=1,
∴BN=DM=AD=1,
∵∠DAB=60°,
∴∠NBG=60°
∴BG=,GN=
,
∴AN==
=
;
故答案為:;
(2)①當點A′落在AB邊上,則MN為AA′的中垂線,
∵∠DAB=60°AM=2,
∴AN=AM=1,
故答案為:1;
②在菱形ABCD中,AC平分∠DAB,
∵∠DAB=60°,
∴∠DAC=∠CAB=30°,
∵△AMN沿MN翻折得到△A′MN,
∴AC⊥MN,AM=A′M,AN=A′N,
∴∠AMN=∠ANM=60°,
∴AM=AN,
∴AM=A′M=AN=A′N,
∴四邊形AM A′N是菱形;
③在菱形ABCD中,AB=AD,
∴∠ADB=∠ABD=60°,
∴∠BA′M=∠DMA′+∠ADB,
∴A′M=AM=2,∠NA′M=∠A=60°,
∴∠NA′B=∠DMA′,
∴△DMA′∽△BA′N,
∴=
,
∵MD=AD=1,A′M=2,
∴=
.
科目:初中數學 來源: 題型:
【題目】已知,如圖,AB和DE是直立在地面上的兩根立柱,AB=5m,某一時刻AB在陽光下的投影BC=3m.
(1)請你在圖中畫出此時DE在陽光下的投影;
(2)在測量AB的投影時,同時測量出DE在陽光下的投影長為6m,請你計算DE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com