精英家教網 > 初中數學 > 題目詳情

【題目】如圖12分別是某款籃球架的實物圖與示意圖,已知ABBC于點B,底座BC的長為1米,底座BC與支架AC所成的角∠ACB60°,點H在支架AF上,籃板底部支架EHBCEFEH于點E,已知AH米,HF米,HE1米.

(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數.

(2)求籃板底部點E到地面的距離.(結果保留根號)

【答案】(1) 籃板底部支架HE與支架AF所成的角∠FHE的度數為45°;(2) 籃板底部點E到地面的距離是(+)米

【解析】

(1)由cos∠FHE可得答案;

(2)延長FECB的延長線于M,過點AAGFMG,過點HHNAGN據此知GM=AB,HN=EG,Rt△ABC,求得AB=BCtan60°;Rt△ANH,求得HN=AHsin45°;根據EM=EG+GM可得答案

1)在Rt△EFH,cos∠FHE,∴∠FHE=45°.

籃板底部支架HE與支架AF所成的角∠FHE的度數為45°;

(2)延長FECB的延長線于M,過點AAGFMG,過點HHNAGN,則四邊形ABMG和四邊形HNGE是矩形,∴GM=AB,HN=EG.在Rt△ABC中,∵tan∠ACB,∴AB=BCtan60°=1,∴GM=AB.在Rt△ANH,∠FAN=∠FHE=45°,∴HN=AHsin45°,∴EM=EG+GM

籃板底部點E到地面的距離是()米

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若實數 m、n 滿足m+nmn,且n≠0時,就稱點 Pm)為完美點,若反比例函數y的圖象上存在兩個完美點A、B,且 AB4,則 k的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將矩形OABC沿著OB對折,使點A落在點A'處,點B的坐標(8,4),則點A'的坐標是( )

A. (4,) B. ()

C. (, ) D. ( )

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知二次函數y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(點A在點B的左側),頂點D和點B關于過點A的直線l:y=﹣x﹣對稱.

(1)求A、B兩點的坐標及二次函數解析式;

(2)如圖2,作直線AD,過點BAD的平行線交直線1于點E,若點P是直線AD上的一動點,點Q是直線AE上的一動點.連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請說明理由:

(3)將二次函數圖象向右平移個單位,再向上平移3個單位,平移后的二次函數圖象上存在一點M,其橫坐標為3,在y軸上是否存在點F,使得∠MAF=45°?若存在,請求出點F坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,反比例函數y= 的圖象與一次函數y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數和反比例函數的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數值大于反比例函數值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,反比例函數y= 的圖象與一次函數y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數和反比例函數的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數值大于反比例函數值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在正方形ABCD中,GCD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BDAGF點.已知FG=2,則線段AE的長度為( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知反比例函數y(k≠0,k是常數)的圖象過點P(-3,5).

(1)求此反比例函數的解析式;

(2)在函數圖象上有兩點(a1b1)和(a2,b2),若a1a2,試判斷b1b2的大小關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yax2bxc⊙M相交于A、B、CD四點,其中A、B兩點的坐標分別為(10)(0,-2),點Dx軸上且AD⊙M的直徑.點E⊙My軸的另一個交點,過劣弧ED上的點FFH⊥AD于點H,且FH1.5.

(1)求點D的坐標及該拋物線對應的函數表達式;

(2)若點Px軸上的一個動點,試求出△PEF的周長最小時點P的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视