【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知AB⊥BC于點B,底座BC的長為1米,底座BC與支架AC所成的角∠ACB=60°,點H在支架AF上,籃板底部支架EH∥BC,EF⊥EH于點E,已知AH長米,HF長
米,HE長1米.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數.
(2)求籃板底部點E到地面的距離.(結果保留根號)
【答案】(1) 籃板底部支架HE與支架AF所成的角∠FHE的度數為45°;(2) 籃板底部點E到地面的距離是(+
)米
【解析】
(1)由cos∠FHE可得答案;
(2)延長FE交CB的延長線于M,過點A作AG⊥FM于G,過點H作HN⊥AG于N,據此知GM=AB,HN=EG,Rt△ABC中,求得AB=BCtan60°;Rt△ANH中,求得HN=AHsin45°
;根據EM=EG+GM可得答案.
(1)在Rt△EFH中,cos∠FHE,∴∠FHE=45°.
答:籃板底部支架HE與支架AF所成的角∠FHE的度數為45°;
(2)延長FE交CB的延長線于M,過點A作AG⊥FM于G,過點H作HN⊥AG于N,則四邊形ABMG和四邊形HNGE是矩形,∴GM=AB,HN=EG.在Rt△ABC中,∵tan∠ACB,∴AB=BCtan60°=1
,∴GM=AB
.在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AHsin45°
,∴EM=EG+GM
.
答:籃板底部點E到地面的距離是()米.
科目:初中數學 來源: 題型:
【題目】若實數 m、n 滿足m+n=mn,且n≠0時,就稱點 P(m,)為“完美點”,若反比例函數y=
的圖象上存在兩個“完美點”A、B,且 AB=4,則 k的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將矩形OABC沿著OB對折,使點A落在點A'處,點B的坐標(8,4),則點A'的坐標是( )
A. (4,) B. (
,
)
C. (,
) D. (
,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知二次函數y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(點A在點B的左側),頂點D和點B關于過點A的直線l:y=﹣
x﹣
對稱.
(1)求A、B兩點的坐標及二次函數解析式;
(2)如圖2,作直線AD,過點B作AD的平行線交直線1于點E,若點P是直線AD上的一動點,點Q是直線AE上的一動點.連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請說明理由:
(3)將二次函數圖象向右平移個單位,再向上平移3
個單位,平移后的二次函數圖象上存在一點M,其橫坐標為3,在y軸上是否存在點F,使得∠MAF=45°?若存在,請求出點F坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,反比例函數y= 的圖象與一次函數y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數和反比例函數的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數值大于反比例函數值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,反比例函數y= 的圖象與一次函數y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數和反比例函數的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數值大于反比例函數值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,G為CD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BD交AG于F點.已知FG=2,則線段AE的長度為( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知反比例函數y=(k≠0,k是常數)的圖象過點P(-3,5).
(1)求此反比例函數的解析式;
(2)在函數圖象上有兩點(a1,b1)和(a2,b2),若a1<a2,試判斷b1與b2的大小關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與⊙M相交于A、B、C、D四點,其中A、B兩點的坐標分別為(-1,0),(0,-2),點D在x軸上且AD為⊙M的直徑.點E是⊙M與y軸的另一個交點,過劣弧ED上的點F作FH⊥AD于點H,且FH=1.5.
(1)求點D的坐標及該拋物線對應的函數表達式;
(2)若點P是x軸上的一個動點,試求出△PEF的周長最小時點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com