【題目】某中學開展“綠化家鄉、植樹造林”活動,為了解全校植樹情況,對該校甲、乙、丙、丁四個班級植樹情況進行了調查,將收集的數據整理并繪制成圖1和圖2兩幅尚不完整的統計圖,請根據圖中的信息,完成下列問題:
(1)這四個班共植樹棵;
(2)補全兩幅統計圖;
(3)求圖1中“甲”班級所對應的扇形圓心角的度數;
(4)若四個班級所種植的樹成活了190棵,全校共植樹2000棵,請你估計全校種植的樹中成活的樹有多少棵.
科目:初中數學 來源: 題型:
【題目】若拋物線y=ax2+bx+c如圖所示,下列四個結論:
①abc<0;②b﹣2a<0;③a﹣b+c<0;④b2﹣4ac>0.
其中正確結論的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,延長BA與⊙A相交于點F.若 的長為
,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如果一個 與
的函數圖像經過平移后能與某反比例函數的圖像重合,那么稱這個函數是
與
的“反比例平移函數”.
例如: 的圖像向左平移2個單位,再向下平移1個單位得到
的圖像,則
是
與
的“反比例平移函數”.
(1)若矩形的兩邊分別是2cm、3cm,當這兩邊分別增加 cm、
cm后,得到的新矩形的面積為8
,求
與
的函數表達式,并判斷這個函數是否為“反比例平移函數”.
(2)如圖,在平面直角坐標系中,點O為原點,矩形OABC的頂點A、C的坐標分別為(9,0)、(0,3) .點D是OA的中點,連接OB、CD交于點E,“反比例平移函數” 的圖像經過B、E兩點.則這個“反比例平移函數”的表達式為;這個“反比例平移函數”的圖像經過適當的變換與某一個反比例函數的圖像重合,請寫出這個反比例函數的表達式 .
(3)在(2)的條件下, 已知過線段BE中點的一條直線 交這個“反比例平移函數”圖像于P、Q兩點(P在Q的右側),若B、E、P、Q為頂點組成的四邊形面積為16,請求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A、B的坐標分別為(0,3)、(7,0),點C在第一象限,AC∥x軸,∠OBC=45°.
(1)求點C的坐標;
(2)點D在線段AC上,CD=1,點E的坐標為(n,0),在直線DE的右側作∠DEG=45°,直線EG與直線BC相交于點F,設BF=m,當n<7且n≠0時,求m關于n的函數解析式,并直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在等腰△ABC中,AB=AC,F為AB邊上的中點,延長CB至D,使得BD=BC,連接AD交CF的延長線于E.
(1)如圖1,若∠BAC=60°,求證:△CED為等腰三角形
(2)如圖2,若∠BAC≠60°,(1)中結論還成立嗎?若成立,請證明,若不成立,請說明理由.
(3)如圖3,當 =是(直接填空),△CED為等腰直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖從一個建筑物的A處測得對面樓BC的頂部B的仰角為37°,底部C的俯角為45°,觀察點與樓的水平距離AD為40m,求樓BC的高度(參考數據:sin37°≈0.60;cos37°≈0.80;tan37°≈0.75)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O直徑,OD⊥弦BC于點F,且交⊙O于點E,且∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關系,并給出證明;
(2)當tan∠AEC= ,BC=8時,求OD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,體育場內一看臺與地面所成夾角為30°,看臺最低點A到最高點B的距離為10,A,B兩點正前方有垂直于地面的旗桿DE.在A,B兩點處用儀器測量旗桿頂端E的仰角分別為60°和15°(仰角即視線與水平線的夾角)
(1)
求AE的長;
(2)已知旗桿上有一面旗在離地1米的F點處,這面旗以0.5米/秒的速度勻速上升,求這面旗到達旗桿頂端需要多少秒?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com