精英家教網 > 初中數學 > 題目詳情

【題目】若拋物線y=x2﹣4x+t(t為實數)在0≤x≤3的范圍內與x軸有公共點,則t的取值范圍為

【答案】0≤t≤4
【解析】解:y=x2﹣4x+t=(x﹣2)2+t﹣4,
拋物線的頂點為(2,t﹣4),
當拋物線與x軸的公共點為頂點時,t﹣4=0,解得t=4,
當拋物線在0≤x≤3的范圍內與x軸有公共點,如圖,t﹣4≤0,解得t≤4,則x=0時,y≥0,即t≥0;x=3時,y≥0,即t﹣3≥0,解得t≥3,此時t的范圍為0≤t≤4,
綜上所述,t的范圍為0≤t≤4.
所以答案是0≤t≤4

【考點精析】通過靈活運用拋物線與坐標軸的交點,掌握一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(05),直線x=-5x軸交于點D,直線y=-xx軸及直線x=-5分別交于點CE.B,E關于x軸對稱,連接AB.

(1)求點C,E的坐標及直線AB的解析式;

(2)SSCDES四邊形ABDO,求S的值;

(3)在求(2)S時,嘉琪有個想法:CDE沿x軸翻折到CDB的位置,而CDB與四邊形ABDO拼接后可看成AOC,這樣求S便轉化為直接求AOC的面積,如此不更快捷嗎?但大家經反復驗算,發現SAOCS,請通過計算解釋他的想法錯在哪里.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算正確的是( )

A. ×=2÷1=2 B. -24+22÷20=-24+4÷20=-20÷20=-1

C. -2×()=-2×(-)= D. -12÷(6×3)=-2×3=-6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=ACDBC上任意一點,過D分別向ABAC引垂線,垂足分別為EF點.

1)當點DBC的什么位置時,DE=DF?并證明.

2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?并請給予寫出(不 必證明).

3)過C點作AB邊上的高CG,請問DEDF、CG的長之間存在怎樣的等量關系?并加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】出租車司機小李某天下午運營全是在東西走向的人民大道上進行的,如果規定向東為正,向西為負,他這天下午行駛里程如下:單位:千米

+15, -3, +14,-11,+10,-12,+4,-15,+16,-18

1他將最后一名乘客送到目的地時,距下午出車地點是多少千米?

2若汽車耗油量為千米,這天下午共耗油多少升

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩位同學參加數學綜合素質測試,各項成績如下(單位:分)

數與代數

空間與圖形

統計與概率

綜合與實踐

學生甲

90

93

89

90

學生乙

94

92

94

86


(1)分別計算甲、乙成績的中位數;
(2)如果數與代數、空間與圖形、統計與概率、綜合與實踐的成績按3:3:2:2計算,那么甲、乙的數學綜合素質成績分別為多少分?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.

證明:∵DG⊥BC,AC⊥BC(已知)

∴∠DGB=∠ACB=90°(垂直定義)

∴DG∥AC(

∴∠2=

∵∠1=∠2(已知)

∴∠1=∠ (等量代換)

∴EF∥CD(

∴∠AEF=∠

∵EF⊥AB(已知)

∴∠AEF=90°(

∴∠ADC=90°(

∴CD⊥AB(

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市今年中考理、化實驗操作考試,采用學生抽簽方式決定自己的考試內容.規定:每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學實驗(用紙簽D、E、F表示)中各抽取一個進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.
(1)用“列表法”或“樹狀圖法”表示所有可能出現的結果;
(2)小剛抽到物理實驗B和化學實驗F(記作事件M)的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=kx+b(k、b為常數)分別與x軸、y軸交于點A(﹣4,0)、B(0,3),拋物線y=﹣x2+2x+1與y軸交于點C.
(Ⅰ)求直線y=kx+b的函數解析式;
(Ⅱ)若點P(x,y)是拋物線y=﹣x2+2x+1上的任意一點,設點P到直線AB的距離為d,求d關于x的函數解析式,并求d取最小值時點P的坐標;
(Ⅲ)若點E在拋物線y=﹣x2+2x+1的對稱軸上移動,點F在直線AB上移動,求CE+EF的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视