【題目】矩形ABCD中,AD=8cm,AB=6cm,動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發沿邊CD向點D以1cm/s的速度運動,E點運動到B點停止,F點繼續運動,運動到點D停止.如圖可得到矩形CFHE,設F點運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數關系用圖象表示大致是如圖中的( )
A.
B.
C.
D.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AC=BC,點D為BC的中點,CE⊥AD于點E,其延長線交AB于點F,連接DF.求證:∠ADC=∠BDF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,E、F分別為線段AC上的兩個點,且DE⊥AC于點E,BF⊥AC于點F,若AB=CD,AE=CF,BD交AC于點M.
(1)試猜想DE與BF的關系,并證明你的結論;
(2)求證:MB=MD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:A(0,1),B(2,0),C(4,3)
(1)在直角坐標系中描出各點,畫出△ABC.
(2)求△ABC的面積;
(3)設點P在坐標軸上,且△ABP與△ABC的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對稱軸為x=2,與x軸的一個交點是(﹣1,0).下列結論: ①ac<0;
②4a﹣2b+c>0;
③拋物線與x軸的另一個交點是(4,0);
④點(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2 . 其中正確的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是AB上任一點,∠ABC=∠ABD,從下列各條件中補充一個條件,不一定能推出ΔAPC≌ΔAPD.的是( )
A. BC=BD. B. ∠ACB=∠ADB. C. ∠CAB=∠DAB D. AC=AD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校準備購置甲乙兩種羽毛球拍若干,已知甲種球拍的單價比乙種球拍的單價多40元,且購買4副甲種球拍與購買6副乙種球拍的費用相同.
(1)兩種球拍的單價各是多少元?
(2)若學校準備購買100副甲乙兩種羽毛球拍,且購買甲種球拍的費用不少于乙種球拍費用的3倍,問購買多少副甲種球拍總費用最低?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某縣為了落實中央的“強基惠民工程”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規定時間內完成;若乙隊單獨施工,則完成工程所需天數是規定天數的1.5倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規定時間是多少天?
(2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,M為對角線BD延長線上一點,連接AM和CM,E為CM上一點,且滿足CB=CE,連接BE,交CD于點F.
(1)若∠AMB=30°,且DM=3,求BE的長;
(2)證明:AM=CF+DM.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com