精英家教網 > 初中數學 > 題目詳情
(2013•玉林)如圖,△ABC是⊙O內接正三角形,將△ABC繞點O順時針旋轉30°得到△DEF,DE分別交AB,AC于點M,N,DF交AC于點Q,則有以下結論:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周長等于AC的長;④NQ=QC.其中正確的結論是
①②③
①②③
.(把所有正確的結論的序號都填上)
分析:連結OA、OD、OF、OC、DC、AD、CF,根據旋轉的性質得∠AOD=∠COF=30°,再根據圓周角定理得∠ACD=∠FDC=15°,然后根據三角形外角性質得∠DQN=∠QCD+∠QDC=30°;
同理可得∠AMN=30°,由△DEF為等邊三角形得DE=DF,則弧DE=弧DF,得到弧AE=弧DC,所以∠ADE=∠DAC,根據等腰三角形的性質有ND=NA,于是可根據“AAS”判斷△DNQ≌△ANM;利用QD=QC,ND=NA可判斷△DNQ的周長等于AC的長;由于∠NDQ=60°,∠DQN=30°,則∠DNQ=90°,所以QD>NQ,而QD=QC,所以QC>NQ.
解答:解:連結OA、OD、OF、OC、DC、AD、CF,如圖,
∵△ABC繞點O順時針旋轉30°得到△DEF,
∴∠AOD=∠COF=30°,
∴∠ACD=
1
2
∠AOD=15°,∠FDC=
1
2
∠COF=15°,
∴∠DQN=∠QCD+∠QDC=15°+15°=30°,所以①正確;
同理可得∠AMN=30°,
∵△DEF為等邊三角形,
∴DE=DF,
∴弧DE=弧DF,
∴弧AE+弧AD=弧DC+弧CF,
而弧AD=弧CF,
∴弧AE=弧DC,
∴∠ADE=∠DAC,
∴ND=NA,
在△DNQ和△ANM中
∠DQN=∠AMN
∠DNQ=∠ANM
DN=AN
,
∴△DNQ≌△ANM(AAS),所以②正確;
∵∠ACD=15°,∠FDC=15°,
∴QD=QC,
而ND=NA,
∴ND+QD+NQ=NA+QC+NQ=AC,
即△DNQ的周長等于AC的長,所以③正確;
∵△DEF為等邊三角形,
∴∠NDQ=60°,
而∠DQN=30°,
∴∠DNQ=90°,
∴QD>NQ,
∵QD=QC,
∴QC>NQ,所以④錯誤.
故答案為①②③.
點評:本題考查了圓的綜合題:弧、弦和圓心角之間的關系以及圓周角定理在有關圓的幾何證明中經常用到,同時熟練掌握三角形全等的判定、等邊三角形的性質以及旋轉的性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•玉林)如圖是某手機店今年1-5月份音樂手機銷售額統計圖.根據圖中信息,可以判斷相鄰兩個月音樂手機銷售額變化最大的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•玉林)如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F,連接EF,則四邊形ABEF是菱形.
根據兩人的作法可判斷( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•玉林)如圖,以△ABC的BC邊上一點O為圓心的圓,經過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=
40
,求⊙O的半徑r.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•玉林)如圖,在直角梯形ABCD中,AD∥BC,AD⊥DC,點A關于對角線BD的對稱點F剛好落在腰DC上,連接AF交BD于點E,AF的延長線與BC的延長線交于點G,M,N分別是BG,DF的中點.
(1)求證:四邊形EMCN是矩形;
(2)若AD=2,S梯形ABCD=
152
,求矩形EMCN的長和寬.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•玉林)如圖,拋物線y=-(x-1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(-1,0).
(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视