【題目】如圖,拋物線過點
,
.
為線段OA上一個動點(點M與點A不重合),過點M作垂直于x軸的直線與直線AB和拋物線分別交于點P、N.
(1)求直線AB的解析式和拋物線的解析式;
(2)如果點P是MN的中點,那么求此時點N的坐標;
(3)如果以B,P,N為頂點的三角形與相似,求點M的坐標.
科目:初中數學 來源: 題型:
【題目】我縣某初中為了創建書香校園,購進了一批圖書.其中的20本某種科普書和30本某種文學書共花了1080元,經了解,購買的科普書的單價比文學書的單價多4元.
(1)購買的科普書和文學書的單價各多少元?
(2)另一所學校打算用800元購買這兩種圖書,問購進25本文學書后至多還能購進多少本科普書?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《人民日報》2019年3月1日刊載了“2018年國民經濟和社會發展統計公報”.有關脫貧攻堅的數據如下表.
年度 | 2014 | 2015 | 2016 | 2017 | 2018 |
農村貧困人口/萬 | 7017 | 5575 | 4335 | 3046 | 1660 |
貧困發生率/% | 7.2 | 5.7 | 4.5 | 3.1 | 1.7 |
(1)在給出圖形中,直觀表示近年農村貧困人口人數變化情況.
(2)根據你完善的統計圖,寫兩點你獲得的信息.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題提出:若一個四邊形的兩組對邊乘積之和等于它的兩條對角線的乘積,則稱這個四邊形為巧妙四邊形.
初步思考:(1)寫出你所知道的四邊形是巧妙四邊形的兩種圖形的名稱: , .
(2)小敏對巧妙四邊形進行了研究,發現圓的內接四邊形一定是巧妙四邊形.
如圖①,四邊形ABCD是⊙O的內接四邊形.
求證:AB·CD+BC·AD=AC·BD.
小敏在解答此題時,利用了“相似三角形”進行證明,她的方法如下:
在BD上取點M,使∠MCB=∠DCA.
(請你在下面的空白處完成小敏的證明過程.)
推廣運用:如圖②,在四邊形ABCD中,∠A=∠C=90°,AD=,AB=
,CD=2.求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,CD為⊙O的直徑,CD⊥AB,垂足為點F,AO⊥BC,垂足為點E,CE=2.
(1)求AB的長;
(2)求⊙O的半徑.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923086297137152/1923946164551680/STEM/edc8c851f08548f08f9e61b4dab2d43e.png]
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,BD是一條對角線,點E在直線CD上(與點C,D不重合),連接AE,平移△ADE,使點D移動到點C,得到△BCF,過點F作FG⊥BD于點G,連接AG,EG.
(1)問題猜想:如圖1,若點E在線段CD上,試猜想AG與EG的數量關系是____________,位置關系是____________;
(2)類比探究:如圖2,若點E在線段CD的延長線上,其余條件不變,小明猜想(1)中的結論仍然成立,請你給出證明;
(3)解決問題:若點E在線段DC的延長線上,且∠AGF=120°,正方形ABCD的邊長為2,請在備用圖中畫出圖形,并直接寫出DE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P從出發,沿所示方向運動,每當碰到長方形OABC的邊時會進行反彈,反彈時反射角等于入射角,當點P第2018次碰到長方形的邊時,點P的坐標為______.
【答案】
【解析】
根據反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個循環組依次循環,用2018除以6,根據商和余數的情況確定所對應的點的坐標即可.
解:如圖所示:經過6次反彈后動點回到出發點,
,
當點P第2018次碰到矩形的邊時為第337個循環組的第2次反彈,
點P的坐標為
.
故答案為:.
【點睛】
此題主要考查了點的坐標的規律,作出圖形,觀察出每6次反彈為一個循環組依次循環是解題的關鍵.
【題型】填空題
【結束】
15
【題目】為了保護環境,某公交公司決定購買A、B兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節省油量為萬升;B種型號每輛價格為b萬元,每年節省油量為
萬升:經調查,購買一輛A型車比購買一輛B型車多20萬元,購買2輛A型車比購買3輛B型車少60萬元.
請求出a和b;
若購買這批混合動力公交車每年能節省
萬升汽油,求購買這批混合動力公交車需要多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,E是對角線BD上的一點,過點C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com