【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣ x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發,沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
【答案】
(1)
解:∵y=a(x+3)(x﹣1),
∴點A的坐標為(﹣3,0)、點B兩的坐標為(1,0),
∵直線y=﹣ x+b經過點A,
∴b=﹣3 ,
∴y=﹣ x﹣3
,
當x=2時,y=﹣5 ,
則點D的坐標為(2,﹣5 ),
∵點D在拋物線上,
∴a(2+3)(2﹣1)=﹣5 ,
解得,a=﹣ ,
則拋物線的解析式為y=﹣ (x+3)(x﹣1)=﹣
x2﹣2
x+3
(2)
解:如圖1中,作PH⊥x軸于H,設點 P坐標(m,n),
當△BPA∽△ABC時,∠BAC=∠PBA,
∴tan∠BAC=tan∠PBA,即 =
,
∴ =
,即n=﹣a(m﹣1),
∴ 解得m=﹣4或1(舍棄),
當m=﹣4時,n=5a,
∵△BPA∽△ABC,
∴ =
,
∴AB2=ACPB,
∴42= ,
解得a=﹣ 或
(舍棄),
則n=5a=﹣ ,
∴點P坐標(﹣4,﹣ ).
當△PBA∽△ABC時,∠CBA=∠PBA,
∴tan∠CBA=tan∠PBA,即 =
,
∴ =
,
∴n=﹣3a(m﹣1),
∴ ,
解得m=﹣6或1(舍棄),
當m=﹣6時,n=21a,
∵△PBA∽△ABC,
∴ =
,即AB2=BCPB,
∴42=
,
解得a=﹣ 或
(不合題意舍棄),
則點P坐標(﹣6,﹣3 ),
綜上所述,符合條件的點P的坐標(﹣4,﹣ )和(﹣6,﹣3
)
(3)
解:如圖2中,作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,
則tan∠DAN= =
=
,
∴∠DAN=60°,
∴∠EDF=60°,
∴DE= =
EF,
∴Q的運動時間t= +
=BE+EF,
∴當BE和EF共線時,t最小,
則BE⊥DM,此時點E坐標(1,﹣4 )
【解析】(1)根據二次函數的交點式確定點A、B的坐標,進而求出直線AD的解析式,接著求出點D的坐標,將D點坐標代入拋物線解析式確定a的值;(2)由于沒有明確說明相似三角形的對應頂點,因此需要分情況討論:①△ABC∽△BAP;②△ABC∽△PAB;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據正切的定義求出Q的運動時間t=BE+EF時,t最小即可.
科目:初中數學 來源: 題型:
【題目】端午節那天,小賢回家看到桌上有一盤粽子,其中有豆沙粽、肉粽各1個,蜜棗粽2個,這些粽子除餡外無其他差別.
(1)小賢隨機地從盤中取出一個粽子,取出的是肉粽的概率是多少?
(2)小賢隨機地從盤中取出兩個粽子,試用畫樹狀圖或列表的方法表示所有可能的結果,并求出小賢取出的兩個都是蜜棗粽的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,某同學去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是多少?
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數y=kx+b的圖象與x、y軸分別交于點A(2,0),B(0,4).
(1)求該函數的解析式;
(2)O為坐標原點,設OA、AB的中點分別為C、D,P為OB上一動點,求PC+PD的最小值,并求取得最小值時P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,一個電子蜘蛛從點A出發勻速爬行,它先沿線段AB爬到點B,再沿半圓經過點M爬到點C.如果準備在M、N、P、Q四點中選定一點安裝一臺記錄儀,記錄電子蜘蛛爬行的全過程.設電子蜘蛛爬行的時間為x,電子蜘蛛與記錄儀之間的距離為y,表示y與x函數關系的圖象如圖2所示,那么記錄儀可能位于圖1中的( )
A.點M
B.點N
C.點P
D.點Q
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx+c(a,b,c是常數,a>0)的部分圖象如圖所示,直線x=1是它的對稱軸.若一元二次方程ax2+bx+c=0的一個根x1的取值范圍是2<x1<3,則它的另一個根x2的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com