【題目】如圖,反比例函數y=(x>0)的圖象與直線y=x交于點M,∠AMB=90°,其兩邊分別與兩坐標軸的正半軸交于點A、B,四邊形OAMB的面積為6.
(1)求k的值;
(2)點P在(1)的反比例函數y=(x>0)的圖象上,若點P的橫坐標為3,在x軸上有一點D(4,0),若在直線y=x上有動點C,構成△PDC,其面積為3,請寫出C點的坐標;
(3)若∠EPF=90°,其兩邊分別為與x軸正半軸,直線y=x交于點E、F,問是否存在點E,使PE=PF?若存在,求出點E的坐標;若不存在,請說明理由.
【答案】(1)k=6;(2)滿足條件的點C坐標為或
;(3)存在,(4,0)和(6,0)
【解析】
(1)過點M作MC⊥x軸于點C,MD⊥y軸于點D,根據AAS證明△AMC≌△BMD,那么S四邊形OCMD=S四邊形OAMB=6,根據反比例函數比例系數k的幾何意義得出k=6;
(2)如圖1-1中,延長DP交OC于點E,作DH⊥OC于H.利用三角形的面積公式求出EC的長即可解決問題;
(3)先根據反比例函數圖象上點的坐標特征求得點P的坐標為(3,2).再分兩種情況進行討論:①如圖2,過點P作PG⊥x軸于點G,過點F作FH⊥PG于點H,交y軸于點K.根據AAS證明△PGE≌△FHP,進而求出E點坐標;②如圖3,同理求出E點坐標.
解:(1)如圖1,過點M作MC⊥x軸于點C,MD⊥y軸于點D,
則∠MCA=∠MDB=90°,∠AMC=∠BMD,MC=MD,
∴△AMC≌△BMD,
∴S四邊形OCMD=S四邊形OAMB=6,
∴k=6;
(2)如圖1﹣1中,延長DP交OC于點E,作DH⊥OC于H,作PJ⊥OC于J,
∵D(4,0),P(3,2),
∴直線PD的解析式為y=﹣2x+8,
由,解得
.
∴E(,
),
在Rt△ODH中,∵∠DOH=45°,OD=4,
∴DH=2,同法可得PJ=
∵ECDH﹣
ECPJ=3,
∴EC=2,
∴滿足條件的點C坐標為(,
)或(
,
).
(3)存在點E,使得PE=PF.
由題意,得點P的坐標為(3,2).
①如圖2,過點P作PG⊥x軸于點G,過點F作FH⊥PG于點H,交y軸于點K.
∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,
∴△PGE≌△FHP,
∴PG=FH=2,FK=OK=3﹣2=1,GE=HP=2﹣1=1,
∴OE=OG+GE=3+1=4,
∴E(4,0);
②如圖3,過點P作PG⊥x軸于點G,過點F作FH⊥PG于點H,交y軸于點K.
∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,
∴△PGE≌△FHP,
∴PG=FH=2,FK=OK=3+2=5,GE=HP=5﹣2=3,
∴OE=OG+GE=3+3=6,
∴E(6,0),
故答案為(4,0)和(6,0).
科目:初中數學 來源: 題型:
【題目】如圖,P是邊長為3的等邊△ABC邊AB上一動點,沿過點P的直線折疊∠B,使點B落在AC上,對應點為D,折痕交BC于E,點D是AC的一個三等分點,PB的長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,AC與BD交于點E,∠ADB=∠ACB.
(1)求證:;
(2)若AB⊥AC,AE:EC=1:2,F是BC中點,求證:四邊形ABFD是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(4,2)、B(n,﹣4)是一次函數y=kx+b圖象與反比例函數圖象的兩個交點.
(1)求此反比例函數和一次函數的解析式;
(2)直接寫出△AOB的面積;
(3)根據圖象直接寫出使一次函數的值小于反比例函數的值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=3,OC=6,則另一直角邊BC的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某小區有甲、乙兩座樓房,樓間距BC為50米,在乙樓頂部A點測得甲樓頂部D點的仰角為37°,在乙樓底部B點測得甲樓頂部D點的仰角為60°,則甲、乙兩樓的高度分別為多少?(結果精確到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,且AB=AC,延長BC至點D,使CD=CA,連接AD交⊙O與點E,連接BE,CE.
(1)求證:△ABE≌△CDE;
(2)填空:
①當∠ABC的度數為______時,四邊形AOCE是菱形;
②若AE=,AB=2
,則DE的長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:在一個三角形中,若存在兩條邊x和y,使得y=x2,則稱此三角形為“平方三角形”,x稱為平方邊.
(1)“若等邊三角形為平方三角形,則面積為是 命題;“有一個角為30°且有一條直角邊為2的直角三角形是平方三角形”是 命題;(填“真”或“假”)
(2)若a,b,c是平方三角形的三條邊,平方邊a=2,若三角形中存在一個角為60°,求c的值;
(3)如圖,在△ABC中,D是BC上一點.
①若∠CAD=∠B,CD=1,求證,△ABC是平方三角形;
②若∠C=90°,BD=1,AC=m,CD=n,求tan∠DAB.(用含m,n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,
分別是四邊形
和
的對角線,點
在
內,
.
(1)如圖1,當四邊形和
均為正方形時,連接
.
①求證:∽
;
②若,
,求
的長;
(2)如圖2,當四邊形和
均為矩形,且
時,若
,
,
,求
的值;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com