精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,點A1,A2,A3,…B1,B2,B3,…分別在直線y=x+bx軸上.OA1B1,B1A2B2,B2A3B3,…都是等腰直角三角形.如果點A1(1,1),那么點A2018的縱坐標是_____

【答案】

【解析】

因為每個A點為等腰直角三角形的直角頂點,則每個點A的縱坐標為對應等腰直角三角形的斜邊一半.故先設出各點A的縱坐標,可以表示A的橫坐標,代入解析式可求點A的縱坐標,規律可求.

分別過點A1,A2,A3,…x軸作垂線,垂足為C1,C2,C3,…

∵點A1(1,1)在直線y=x+b

∴代入求得:b=

y=x+

∵△OA1B1為等腰直角三角形

OB1=2

設點A2坐標為(a,b)

∵△B1A2B2為等腰直角三角形

A2C2=B1C2=b

a=OC2=OB1+B1C2=2+b

A2(2+b,b)代入y=x+

解得b=

OB2=5

同理設點A3坐標為(a,b)

∵△B2A3B3為等腰直角三角形

A3C3=B2C3=b

a=OC3=OB2+B2C3=5+b

A2(5+b,b)代入y=x+

解得b=

以此類推,發現每個A的縱坐標依次是前一個的

A2018的縱坐標是()2017

故答案為:()2017

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖∠ABC=∠ADC90°,MN分別是AC、BD的中點.

1)求證:MNBD

2)若∠BAD45°,連接MBMD,判斷MBD的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使邊AD落在對角線BD上,折痕為DE,且A點落在對角線F處.若AD=3,CD=4,則AE的長為(

A. B. 1 C. 2 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.

(1)如圖1,等腰直角四邊形ABCD,AB=BC,ABC=90°

若AB=CD=1,ABCD,求對角線BD的長.

若ACBD,求證:AD=CD;

(2)如圖2,在矩形ABCD中,AB=5,BC=9,點P是對角線BD上一點,且BP=2PD,過點P作直線分別交邊AD,BC于點E,F,使四邊形ABFE是等腰直角四邊形,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】關于x的方程2x2﹣5xsinA+2=0有兩個相等的實數根,其中∠A是銳角三角形ABC的一個內角.

(1)求sinA的值;

(2)若關于y的方程y2﹣10y+k2﹣4k+29=0的兩個根恰好是ABC的兩邊長,求ABC的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把邊長為1的正方形ABCD繞頂點A逆時針旋轉30°到正方形AB′C′D′,則它們的公共部分的面積等于(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側,點B的坐標為(1,0)、C(0,﹣3).

(1)求拋物線的解析式.

(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.

(3)若點Ex軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?如存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】614日是世界獻血日,某市采取自愿報名的方式組織市民義務獻血.獻血時要對獻血者的血型進行檢測,檢測結果有“A”、“B”、“AB”、“O”4種類型.在獻血者人群中,隨機抽取了部分獻血者的血型結果進行統計,并根據這個統計結果制作了兩幅不完整的圖表:

血型

A

B

AB

O

人數

   

10

5

   

(1)這次隨機抽取的獻血者人數為   人,m=   ;

(2)補全上表中的數據;

(3)若這次活動中該市有3000人義務獻血,請你根據抽樣結果回答:

從獻血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视