精英家教網 > 初中數學 > 題目詳情
如圖,矩形ABCD中,對角線AC、BD相交于O點,點P是線段AD上一動點(不與點D重合),PO的延長線交BC于Q點.
(1)求證:四邊形PBQD為平行四邊形.
(2)若AB=3cm,AD=4cm,P從點A出發.以1cm/秒的速度向點D勻速運動.設點P運動時間為t秒,問四邊形PBQD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.
分析:(1)依據矩形的性質和平行線的性質,通過全等三角形的判定定理判定△POD≌△QOB,所以OP=OQ,則四邊形PBQD的對角線互相平分,故四邊形PBQD為平行四邊形.
(2)點P從點A出發運動t秒時,AP=tcm,PD=(4-t)cm.當四邊形PBQD是菱形時,PB=PD=(4-t)cm.在直角△ABP中,根據勾股定理得到AP2+AB2=PB2,即t2+32=(4-t)2,由此可以求得t的值.
解答:(1)證明:如圖,∵四邊形ABCD是矩形,
∴AD∥BC,OD=OB,
∴∠PDO=∠QOB,
在△POD與△QOB中,
∠PDO=∠QBO
OD=OB
∠POD=∠QOB
,
∴△POD≌△QOB(ASA),
∴OP=OQ,
∴四邊形PBQD為平行四邊形;

(2)點P從點A出發運動t秒時,AP=tcm,PD=(4-t)cm.
當四邊形PBQD是菱形時,PB=PD=(4-t)cm.
∵四邊形ABCD是矩形,
∴∠BAP=90°,
∴在直角△ABP中,AB=3cm,AP2+AB2=PB2,即t2+32=(4-t)2,
解得:t=
7
8
,
∴點P運動時間為
7
8
秒時,四邊形PBQD能夠成為菱形.
點評:本題考查了平行四邊形的判定、矩形的性質以及菱形的性質.凡是可以用平行四邊形知識證明的問題,不要再回到用三角形全等證明,應直接運用平行四邊形的性質和判定去解決問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數學 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2008•懷柔區二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视