【題目】如圖,C為線段AD上一點,點B為CD的中點,且AD=8cm,BD=2cm.
(1)圖中共有多少條線段?
(2)求AC的長.
(3)若點E在直線AD上,且EA=3cm,求BE的長.
【答案】解:(1)圖中共有6條線段;
(2)∵點B為CD的中點.
∴CD=2BD.
∵BD=2cm,
∴CD=4cm.
∵AC=AD﹣CD且AD=8cm,CD=4cm,
∴AC=4cm;
(3)當E在點A的左邊時,
則BE=BA+EA且BA=6cm,EA=3cm,
∴BE=9cm
當E在點A的右邊時,
則BE=AB﹣EA且AB=6cm,EA=3cm,
∴BE=3cm.
【解析】(1)根據線段的定義找出線段即可;
(2)先根據點B為CD的中點,BD=2cm求出線段CD的長,再根據AC=AD﹣CD即可得出結論;
(3)由于不知道E點的位置,故應分E在點A的左邊與E在點A的右邊兩種情況進行解答.
【考點精析】掌握直線、射線、線段和兩點間的距離是解答本題的根本,需要知道直線射線與線段,形狀相似有關聯.直線長短不確定,可向兩方無限延.射線僅有一端點,反向延長成直線.線段定長兩端點,雙向延伸變直線.兩點定線是共性,組成圖形最常見;同軸兩點求距離,大減小數就為之.與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標差先求值.差方相加開平方,距離公式要牢記.
科目:初中數學 來源: 題型:
【題目】如圖,點C是線段AB上一點,D是線段CB的中點,已知圖中所有的線段的長度之和為23,線段AC的長度與線段CB的長度都是正整數,則線段AC長 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以為邊長的正方形DEFG的一邊CD在直線AB上,且點D與點A重合,現將正方形DEFG沿A﹣B的方向以每秒1個單位的速度勻速運動,當點D與點B重合時停止,則在這個運動過程中,正方形DEFG與△ABC的重合部分的面積S與運動時間t之間的函數關系圖象大致是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A1,A2,A3,…,An在x軸的正半軸上,且OA1=2,OA2=2OA1,OA3=2OA2,…,OAn=2OAn﹣1,點B1,B2,B3,…,Bn在第一象限的角平分線l上,且A1B1,A2B2,…,AnBn都與射線l垂直,則B1的坐標是 ,B3的坐標是 ,Bn的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的一元二次方程x2﹣(2k﹣1)x+k2﹣1=0,其中k<0.
(1)求證:方程有兩個不相等的實數根;
(2)當k=﹣1時,求該方程的根.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com