精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,∠ACB=90°,將△ABC繞著點A逆時針旋轉得到△ADE,點C落在邊AD上,連接BD.若∠DAE=α,則用含α的式子表示∠CBD的大小是(

A.α
B.90°﹣α
C.
D.

【答案】A
【解析】解:∵根據旋轉的性質得到:∠1=∠2=α,∠ACB=∠D=90°,∠3=∠5,
∴∠3=∠5=90°﹣α,
∵(∠1+∠2)+(∠3+∠4+∠E)+∠6+∠5=360°,∠1+∠3=90°,∠2+∠5=90°,∠3+∠4+∠E=180°,
∴2α+180°+∠6+90°﹣α=360°,則∠6=90°﹣α,
∴∠4=90°﹣∠6=α.
故選:A.

【考點精析】根據題目的已知條件,利用旋轉的性質的相關知識可以得到問題的答案,需要掌握①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一點,聯結AD,以AD為一邊且在AD的右側作正方形ADEF.

(1)如果AB=AC,∠BAC=90°,
①當點D在線段BC上時(與點B不重合),如圖2,將△ABD繞A點逆時針旋轉90°,所得到的三角形為 , 線段CF,BD所在直線的位置關系為 , 線段CF,BD的數量關系為;

(2)②當點D在線段BC的延長線上時,如圖3,①中的結論是否仍然成立,并說明理由;

(3)如果AB≠AC,∠BAC是銳角,點D在線段BC上,當∠ACB滿足什么條件時,CF⊥BC(點C,F不重合),并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC+D=180°AC平分∠BAD,CEABCFAD.試說明:

1CBE≌△CDF;

2AB+DF=AF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“今天你光盤了嗎?”這是國家倡導“厲行節約,反對浪費”以來的時尚流行語.某校團委隨機抽取了部分學生,對他們進行了關于“光盤行動”所持態度的調查,并根據調查收集的數據繪制了如下兩幅不完整的統計圖:

根據上述信息,解答下列問題:
(1)抽取的學生人數為
(2)將兩幅統計圖補充完整;
(3)請你估計該校1200名學生中對“光盤行動”持贊成態度的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O為菱形ABCD對角線的交點,DE∥AC,CE∥BD.

(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AC=6,BD=8,求線段OE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖,對稱軸是x=1,有以下四個結論:
①abc>0;②b2﹣4ac>0;③b=﹣2a;④a+b+c>2,
其中正確的是(填寫序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,BC=4,BD平分∠ABC,過點AAD⊥BD于點D,過點DDE∥CB,分別交AB、AC于點E、F,若EF=2DF,則AB的長為( 。

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知方格紙中的每個小方格都是邊長為1個單位的正方形在建立平面直角坐標系后,ABC的頂點均在格點上C的坐標為4,-1).

1請以y軸為對稱軸畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1、C1的坐標;

2ABC的面積是

3Pa+1,b-1與點C關于x軸對稱,a= ,b=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.若AB=3cm,BC=5cm,點PB點出發,以1cm/s的速度沿BC→CD→DA運動至A點停止,則從運動開始經過多少時間,△ABP為等腰三角形?

備用圖1

備用圖2 備用圖3

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视