【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為192m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(含邊界,不考慮樹的粗細),求x取何值時,花園面積S最大,并求出花園面積S的最大值.
【答案】(1)x的值為12或16;(2)花園面積S的最大值為195平方米.
【解析】試題分析:(1)根據題意得出長×寬=192,進而得出答案;
(2)由題意可得出:S=x(28-x)=-x2+28x=-(x-14)2+196,再利用二次函數增減性求得最值.
試題解析:(1)∵AB=x,則BC=(28-x),
∴x(28-x)=192,
解得:x1=12,x2=16,
答:x的值為12或16;
(2)∵AB=xm,
∴BC=28-x,
∴S=x(28-x)=-x2+28x=-(x-14)2+196,
∵在P處有一棵樹與墻CD,AD的距離分別是15m和6m,
∵28-15=13,
∴6≤x≤13,
∴當x=13時,S取到最大值為:S=-(13-14)2+196=195,
答:花園面積S的最大值為195平方米.
科目:初中數學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發現,這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在四邊形 ABCD 中,∠A=x°,∠C=y°.
(1) ∠ABC+∠ADC= °.(用含 x,y 的代數式表示)
(2) BE、DF 分別為∠ABC、∠ADC 的外角平分線,
①若 BE∥DF,x=30,則 y= ;
②當 y=2x 時,若 BE 與 DF 交于點 P,且∠DPB=20°,求 y 的值.
(3) 如圖②,∠ABC 的平分線與∠ADC 的外角平分線交于點 Q,則∠Q= °.(用含 x,y 的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中華文明,源遠流長:中華詩詞,寓意深廣.為了傳承優秀傳統文化,我市某校團委組織了一次全校2000名學生參加的“中國詩詞大會”海選比賽,賽后發現所有參賽學生的成績均不低于50分.為了更好地了解本次海選比賽的成績分布情況,隨機抽取了其中200名學生的海選比賽成績(成績x取整數,總分100分)作為樣本進行整理,得到下列統計圖表
組別 | 海選成績x |
A組 | 50≤x<60 |
B組 | 60≤x<70 |
C組 | 70≤x<80 |
D組 | 80≤x<90 |
E組 | 90≤x<100 |
請根據所給信息,解答下列問題
①圖1條形統計圖中D組人數有多少?
②在圖2的扇形統計圖中,記表示B組人數所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角的度數為 度;
③規定海選成績在90分以上(包括90分)記為“優等”,請估計該校參加這次海選比賽的2000名學生中成績“優等”的有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形網格中(網格中的每個小正方形邊長是1),△ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:
(1)作出△ABC繞點A逆時針旋轉90°的△AB1C1.
(2)作出△AB1C1關于原點O成中心對稱的△A1B2C2.
(3)請直接寫出以A1、B2、C2為頂點的平行四邊形的第四個頂點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F是AB上的一個動點(F不與A,B重合),過點F的反比例函數y= (x>0)的圖象與BC邊交于點E.
(1)當F為AB的中點時,求該函數的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】修正后的《水污染防治法》于2018年1月1日起施行,某企業為了提高污水處理的能力,決定購買10臺污水處理設備,現有兩種型號的設備,其中每臺的價格、月處理污水量如下表:
|
| |
價格(萬元/臺) | 12 | 10 |
處理污水量(噸/月) | 240 | 200 |
經預算,該企業購買設備的資金不高于105萬元.
(1)請你設計該企業可能的購買方案;
(2)若企業每月產生的污水量為2040噸,為了節約資金,應選擇哪種購買方案?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據下表中的二次函數y=ax2+bx+c的自變量x與函數y的對應值,可判斷二次函數的解析式為( 。
x | … | 0 | 1 | 2 | … | |
y | … | … |
A. y=x2﹣
x﹣
B. y=
x2+
x﹣
C. y=﹣x2﹣
x+
D. y=﹣
x2+
x+
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】.已知:在矩形中,
是對角線,
于點
,
于點
;
(1)如圖1,求證:;
(2)如圖2,當時,連接
.
,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于矩形
面積的
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com